论文标题

低能电子显微镜强度 - 电压数据 - 分解,稀疏采样和分类

Low-energy electron microscopy intensity-voltage data -- factorization, sparse sampling, and classification

论文作者

Masia, Francesco, Langbein, Wolfgang, Fischer, Simon, Krisponeit, Jon-Olaf, Falta, Jens

论文摘要

低能电子显微镜(LEEM)作为强度电压(I-V)曲线可提供表面的高光谱图像,可用于识别表面类型,但难以分析。在这里,我们证明了将算法用于将数据分配到光谱中的数据和特征成分浓度(FSC3)以识别不同的物理表面相。重要的是,FSC3是一种无监督和快速的算法。作为示例数据,我们使用有关二晶型单晶底物上氧化丙二酰基或氧化芳族生长的实验,均具有共存的表面成分的复杂分布,在化学成分和晶体学结构上均有所不同。通过分解结果,证明了一种稀疏的采样方法,将测量时间降低了1-2个数量级,与动态表面研究有关。 FSC3浓度为基于支持向量机(SVM)类型的监督分类提供了功能。在这里,通过其衍射模式在结构上鉴定的特定表面区域,以及通过互补的微观显微镜技术化学的表面区域用作训练集。在两个示例性LEEM I-V数据集上都证明了可靠的分类。

Low-energy electron microscopy (LEEM) taken as intensity-voltage (I-V) curves provides hyperspectral images of surfaces, which can be used to identify the surface type, but are difficult to analyze. Here, we demonstrate the use of an algorithm for factorizing the data into spectra and concentrations of characteristic components (FSC3) for identifying distinct physical surface phases. Importantly, FSC3 is an unsupervised and fast algorithm. As example data we use experiments on the growth of praseodymium oxide or ruthenium oxide on ruthenium single crystal substrates, both featuring a complex distribution of coexisting surface components, varying in both chemical composition and crystallographic structure. With the factorization result a sparse sampling method is demonstrated, reducing the measurement time by 1-2 orders of magnitude, relevant for dynamic surface studies. The FSC3 concentrations are providing the features for a support vector machine (SVM) based supervised classification of the types. Here, specific surface regions which have been identified structurally, via their diffraction pattern, as well as chemically by complementary spectro-microscopic techniques, are used as training sets. A reliable classification is demonstrated on both exemplary LEEM I-V datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源