论文标题

可解释的肺鳞状细胞癌复发的预测与自我监督学习

Interpretable Prediction of Lung Squamous Cell Carcinoma Recurrence With Self-supervised Learning

论文作者

Zhu, Weicheng, Fernandez-Granda, Carlos, Razavian, Narges

论文摘要

肺鳞状细胞癌(LSCC)的复发和转移率很高。影响复发和转移的因素目前尚不清楚,并且没有明显的组织病理学或形态学特征,表明LSCC中复发和转移的风险。我们的研究重点是基于H&E染色的组织病理全扫描图像(WSI)的LSCC的复发预测。由于在具有可用复发信息的患者方面,LSCC队列的大小较小,因此具有各种卷积神经网络的标准端到端学习往往会过度合适。同样,这些模型的预测很难解释。组织病理学WSI通常非常大,因此被处理为一组较小的瓷砖。在这项工作中,我们提出了一种新颖的条件自学学习(SSL)方法,以首先在瓷砖级别学习WSI的表示,并利用聚类算法来识别具有相似组织病理学表示的瓷砖。由自我统计的结果表示和簇用作患者水平复发预测的生存模型的特征。使用来自TCGA和CPTAC的两个公开数据集,我们表明我们的LSCC复发预测生存模型优于基于LSCC病理阶段的方法和机器学习基线,例如多个实例学习。提出的方法还使我们能够通过衍生簇来解释复发组织病理学风险因素。这可以帮助病理学家提出有关与LSCC复发相关的形态特征的新假设。

Lung squamous cell carcinoma (LSCC) has a high recurrence and metastasis rate. Factors influencing recurrence and metastasis are currently unknown and there are no distinct histopathological or morphological features indicating the risks of recurrence and metastasis in LSCC. Our study focuses on the recurrence prediction of LSCC based on H&E-stained histopathological whole-slide images (WSI). Due to the small size of LSCC cohorts in terms of patients with available recurrence information, standard end-to-end learning with various convolutional neural networks for this task tends to overfit. Also, the predictions made by these models are hard to interpret. Histopathology WSIs are typically very large and are therefore processed as a set of smaller tiles. In this work, we propose a novel conditional self-supervised learning (SSL) method to learn representations of WSI at the tile level first, and leverage clustering algorithms to identify the tiles with similar histopathological representations. The resulting representations and clusters from self-supervision are used as features of a survival model for recurrence prediction at the patient level. Using two publicly available datasets from TCGA and CPTAC, we show that our LSCC recurrence prediction survival model outperforms both LSCC pathological stage-based approach and machine learning baselines such as multiple instance learning. The proposed method also enables us to explain the recurrence histopathological risk factors via the derived clusters. This can help pathologists derive new hypotheses regarding morphological features associated with LSCC recurrence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源