论文标题
预处理最小二乘彼得罗夫 - 盖尔金还原订单模型
Preconditioned Least-Squares Petrov-Galerkin Reduced Order Models
论文作者
论文摘要
本文介绍了一种方法,用于提高使用最小二乘Petrov-Galerkin(LSPG)投影方法构建的降低订单模型(ROM)的准确性和效率。与先前的相关工作不同,该工作侧重于在ROM数值解决方案过程中产生的线性系统以提高线性求解器性能,我们的方法直接在LSPG最小化问题中利用了预处理矩阵。以这种方式应用预处理可以提高ROM的准确性,原因有几个。首先,预处理LSPG公式会更改定义残差最小化的规范,这可以改善基于残差的稳定性常数,从而界定ROM解决方案的误差。将预调节器掺入LSPG公式中可以具有额外的效果,以缩放被最小化的残留物的组成部分,这可能对有不同尺度的问题有益。重要的是,我们证明了一个“理想的预处理” LSPG ROM(与其相应的完整模型的Jacobian相反的ROM预处理,或FOM)模拟了FOM溶液的投影,将FOM溶液的增量增量到降低的基础上,在ROM解决方案误差上的下限是为给定减少的基础。通过设计近似Jacobian逆的预处理,可以获得其误差接近此下限的ROM。在奥尔巴尼HPC代码中的几种机械和热机械问题的预测状态中评估了所提出的方法。我们从数字上证明,简单的雅各比,高斯 - 塞德尔和伊卢预处理器的引入适当的正交分解/LSPG配方会大大减少ROM溶液误差,减少雅各布式状况,雅各布式的数量,雅各比迭代的数量,到达融合时间所需的非线性迭代数量以及壁时间。
This paper introduces a methodology for improving the accuracy and efficiency of reduced order models (ROMs) constructed using the least-squares Petrov-Galerkin (LSPG) projection method through the introduction of preconditioning. Unlike prior related work, which focuses on preconditioning the linear systems arising within the ROM numerical solution procedure to improve linear solver performance, our approach leverages a preconditioning matrix directly within the LSPG minimization problem. Applying preconditioning in this way can improve ROM accuracy for several reasons. First, preconditioning the LSPG formulation changes the norm defining the residual minimization, which can improve the residual-based stability constant bounding the ROM solution's error. The incorporation of a preconditioner into the LSPG formulation can have the additional effect of scaling the components of the residual being minimized, which can be beneficial for problems with disparate scales. Importantly, we demonstrate that an 'ideal preconditioned' LSPG ROM (a ROM preconditioned with the inverse of the Jacobian of its corresponding full order model, or FOM) emulates projection of the FOM solution increment onto the reduced basis, a lower bound on the ROM solution error for a given reduced basis. By designing preconditioners that approximate the Jacobian inverse, a ROM whose error approaches this lower bound can be obtained. The proposed approach is evaluated in the predictive regime on several mechanical and thermo-mechanical problems within the Albany HPC code. We demonstrate numerically that the introduction of simple Jacobi, Gauss-Seidel and ILU preconditioners into the Proper Orthogonal Decomposition/LSPG formulation reduces significantly the ROM solution error, the reduced Jacobian condition number, the number of nonlinear iterations required to reach convergence, and the wall time.