论文标题
一个基于搜索的框架,用于自动生成网络物理系统的测试环境
A Search-Based Framework for Automatic Generation of Testing Environments for Cyber-Physical Systems
论文作者
论文摘要
许多现代的网络物理系统都结合了计算机视觉技术,复杂的传感器和高级控制软件,使它们可以自主与环境进行交互。测试此类系统提出了许多挑战:不仅应该改变系统输入,而且还应考虑周围环境。已经开发了许多工具来测试系统模型的可能输入,以伪造其要求。但是,它们并不直接适用于自主网络物理系统,因为在虚拟环境中运行时,它们的模型输入是生成的。在本文中,我们旨在设计一个名为Ambiegen的基于搜索的框架,以产生多种故障,以揭示自动网络物理系统的测试场景。场景代表了自治代理商操作的环境。该框架应适用于生成不同类型的环境。为了生成测试方案,我们利用具有两个目标的NSGA II算法。第一个目标评估了观察到的系统行为与其预期行为的偏差。第二个目标是测试案例多样性,计算为带有参考测试用例的Jaccard距离。我们在三个方案生成案例研究中评估了Ambiegen,即智能热点,机器人障碍物系统和车道保持辅助系统。我们比较了Ambiegen的三种配置:基于单个目标遗传算法,多物镜和随机搜索。单一目标配置均优于随机搜索。多目标配置可以找到与单个目标相同质量的个体,在同一时间预算中产生更独特的测试方案。
Many modern cyber physical systems incorporate computer vision technologies, complex sensors and advanced control software, allowing them to interact with the environment autonomously. Testing such systems poses numerous challenges: not only should the system inputs be varied, but also the surrounding environment should be accounted for. A number of tools have been developed to test the system model for the possible inputs falsifying its requirements. However, they are not directly applicable to autonomous cyber physical systems, as the inputs to their models are generated while operating in a virtual environment. In this paper, we aim to design a search based framework, named AmbieGen, for generating diverse fault revealing test scenarios for autonomous cyber physical systems. The scenarios represent an environment in which an autonomous agent operates. The framework should be applicable to generating different types of environments. To generate the test scenarios, we leverage the NSGA II algorithm with two objectives. The first objective evaluates the deviation of the observed system behaviour from its expected behaviour. The second objective is the test case diversity, calculated as a Jaccard distance with a reference test case. We evaluate AmbieGen on three scenario generation case studies, namely a smart-thermostat, a robot obstacle avoidance system, and a vehicle lane keeping assist system. We compared three configurations of AmbieGen: based on a single objective genetic algorithm, multi objective, and random search. Both single and multi objective configurations outperform the random search. Multi objective configuration can find the individuals of the same quality as the single objective, producing more unique test scenarios in the same time budget.