论文标题

Wasserstein分布在Wasserstein Barycenters上优化了强大的优化

Wasserstein Distributionally Robust Optimization with Wasserstein Barycenters

论文作者

Lau, Tim Tsz-Kit, Liu, Han

论文摘要

在统计和机器学习中的许多应用中,来自多个可能异质来源的数据样本的可用性变得越来越普遍。另一方面,在分布强劲的优化中,我们寻求数据驱动的决策,这些决策在最不利的分布下从最不利的分布中表现出了从数据样本构成的标称分布,从而在一定的概率分布差异中构建。但是,当有多个来源的数据样本可用时,尚不清楚如何在模型学习和估计中实现这种分布鲁棒性。在这项工作中,我们提出,通过瓦斯坦斯坦·巴里凯特(Wasserstein Barycenter)的概念作为来自多个来源的数据样本的汇总,在基于最佳传输的分布强劲优化问题中构建名义分布。在损失函数的特定选择下,拟议的配方将可拖动的重新构造为有限的凸面程序,并具有强大的有限样本和渐近性保证。作为一个说明性的例子,我们证明了零均值高斯随机矢量的分布稀疏稀疏逆逆矩阵估计的问题,我们的建议方案在低维度和高维度中都优于其他广泛使用的估计量。

In many applications in statistics and machine learning, the availability of data samples from multiple possibly heterogeneous sources has become increasingly prevalent. On the other hand, in distributionally robust optimization, we seek data-driven decisions which perform well under the most adverse distribution from a nominal distribution constructed from data samples within a certain discrepancy of probability distributions. However, it remains unclear how to achieve such distributional robustness in model learning and estimation when data samples from multiple sources are available. In this work, we propose constructing the nominal distribution in optimal transport-based distributionally robust optimization problems through the notion of Wasserstein barycenter as an aggregation of data samples from multiple sources. Under specific choices of the loss function, the proposed formulation admits a tractable reformulation as a finite convex program, with powerful finite-sample and asymptotic guarantees. As an illustrative example, we demonstrate with the problem of distributionally robust sparse inverse covariance matrix estimation for zero-mean Gaussian random vectors that our proposed scheme outperforms other widely used estimators in both the low- and high-dimensional regimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源