论文标题

定量标记的长度光谱刚度

Quantitative marked length spectrum rigidity

论文作者

Butt, Karen

论文摘要

我们考虑了一个封闭的Riemannian歧管$ M $负曲率和尺寸至少3个,其长度光谱与本地对称空间$ n $的长度足够接近(多重)。使用Hamenstädt的方法,我们表明$ M $和$ n $的量大约相等。然后,我们显示Besson-Courtois-Gallot映射$ f:m \ to n $是一种差异性,衍生界限接近1,并取决于两个标记的长度光谱函数的比率。因此,我们完善了Hamenstädt和Besson-Courtois-Gallot的结果,如果它们的标记长度相等,它们显示出$ m $和$ n $是等值的。我们还使用耳al的方法以及由于pugh引起的gromov紧凑型定理的版本,证明了紧凑型负弯曲的表面的相似结果。

We consider a closed Riemannian manifold $M$ of negative curvature and dimension at least 3 with marked length spectrum sufficiently close (multiplicatively) to that of a locally symmetric space $N$. Using the methods of Hamenstädt, we show the volumes of $M$ and $N$ are approximately equal. We then show the Besson-Courtois-Gallot map $F: M \to N$ is a diffeomorphism with derivative bounds close to 1 and depending on the ratio of the two marked length spectrum functions. Thus, we refine the results of Hamenstädt and Besson-Courtois-Gallot, which show $M$ and $N$ are isometric if their marked length spectra are equal. We also prove a similar result for compact negatively curved surfaces using the methods of Otal together with a version of the Gromov compactness theorem due to Pugh.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源