论文标题

统一的脑脑共同进化的统一底物

A Unified Substrate for Body-Brain Co-evolution

论文作者

Pontes-Filho, Sidney, Walker, Kathryn, Najarro, Elias, Nichele, Stefano, Risi, Sebastian

论文摘要

复杂的多细胞生物开发的发现需要数百万年的进化。这种多细胞生物的基因组指导其从单个细胞(包括其控制系统)的身体发育。我们的目标是使用单个神经细胞自动机(NCA)作为模块化机器人剂的基因组模仿这种自然过程。在引入的方法中,称为神经细胞机器人底物(NCR),单个NCA指导机器人的生长和在部署过程中控制机器人的细胞活性。我们还引入了三个基准环境,这些环境测试了该方法发展不同机器人形态的能力。在本文中,NCRS经过协方差矩阵适应进化策略(CMA-ES)和协方差矩阵适应地图 - 元素(CMA-ME)的培训,以实现质量多样性,我们显示出具有更高健身得分的更多样化的机器人形态。尽管NCR可以从我们的基准环境中解决更容易的任务,但当任务困难增加时,成功率会降低。我们讨论了未来工作的方向,这些方向可能有助于将NCR方法用于更复杂的领域。

The discovery of complex multicellular organism development took millions of years of evolution. The genome of such a multicellular organism guides the development of its body from a single cell, including its control system. Our goal is to imitate this natural process using a single neural cellular automaton (NCA) as a genome for modular robotic agents. In the introduced approach, called Neural Cellular Robot Substrate (NCRS), a single NCA guides the growth of a robot and the cellular activity which controls the robot during deployment. We also introduce three benchmark environments, which test the ability of the approach to grow different robot morphologies. In this paper, NCRSs are trained with covariance matrix adaptation evolution strategy (CMA-ES), and covariance matrix adaptation MAP-Elites (CMA-ME) for quality diversity, which we show leads to more diverse robot morphologies with higher fitness scores. While the NCRS can solve the easier tasks from our benchmark environments, the success rate reduces when the difficulty of the task increases. We discuss directions for future work that may facilitate the use of the NCRS approach for more complex domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源