论文标题
通过量子纠缠将涡流颗粒的物理学转移到更高的能量
Shifting physics of vortex particles to higher energies via quantum entanglement
论文作者
论文摘要
由于可用的生成技术仅适用于柔软的$ x $ ray扭曲光子,以电子显微镜的束,冷中子或非偏见原子。具有轨道角动量的高能涡流颗粒将派上用场,用于原子物理学,核,耐药和加速器物理学的许多实验,并且为了产生它们需要开发替代方法,适用于超级层压能量和复合粒子。在这里,我们表明,在螺旋辐射的光子发射过程中,可以通过Cherenkov辐射在带有强烈激光束的电荷粒子的碰撞中,在散射或an灭过程中(如$eμ\ to eeμ,ep,ep,ep,ep,ep,e^-e^-e^+ p \ p p p p p p \ e p p),可以生成涡旋态的涡旋状态。获得它们的关键要素是由于一对最终粒子之间的纠缠而导致的后选择协议,这在很大程度上不是过程本身。最终粒子的状态 - 无论是$γ$ ray,一个强子,一个核还是离子 - 如果其他粒子动量的方位角是用较大的误差测量的,或者根本无法测量。结果,可以极大地放松对光束横向相干性的要求,这使得能够在加速器和同步辐射设施上产生高能的涡流束,从而使它们成为了HADRONIC和SPIN研究的新工具。
Physics of structured waves is currently limited to relatively small particle energies as the available generation techniques are only applicable to the soft $X$-ray twisted photons, to the beams of electron microscopes, to cold neutrons, or non-relativistic atoms. The highly energetic vortex particles with an orbital angular momentum would come in handy for a number of experiments in atomic physics, nuclear, hadronic, and accelerator physics, and to generate them one needs to develop alternative methods, applicable for ultrarelativistic energies and for composite particles. Here, we show that the vortex states of in principle arbitrary particles can be generated during photon emission in helical undulators, via Cherenkov radiation, in collisions of charged particles with intense laser beams, in such scattering or annihilation processes as $eμ\to eμ, ep \to ep, e^-e^+ \to p\bar{p}$, and so forth. The key element in obtaining them is the postselection protocol due to entanglement between a pair of final particles and it is largely not the process itself. The state of a final particle -- be it a $γ$-ray, a hadron, a nucleus, or an ion -- becomes twisted if the azimuthal angle of the other particle momentum is measured with a large error or is not measured at all. As a result, requirements to the beam transverse coherence can be greatly relaxed, which enables the generation of highly energetic vortex beams at accelerators and synchrotron radiation facilities, thus making them a new tool for hadronic and spin studies.