论文标题
在不可表示为$ n + w(n)$的数字上
On numbers not representable as $n + w(n)$
论文作者
论文摘要
令$ w(n)$为添加性非负整数值算术功能,等于primes的$ 1 $。我们研究了$ n + w(n)$ $ \ pmod p $的分布,并为一组数字的密度提供了下限,这些密度不可用为$ n + w(n)$。
Let $w(n)$ be an additive non-negative integer-valued arithmetic function which is equal to $1$ on primes. We study the distribution of $n + w(n)$ $\pmod p$ and give a lower bound for the density of the set of numbers which are not representable as $n + w(n)$.