论文标题

关于紧凑型操作员的换向器,通过块三角化:安德森方法的概括和局限性

On commutators of compact operators via block tridiagonalization: generalizations and limitations of Anderson's approach

论文作者

Loreaux, Jireh, Patnaik, Sasmita, Petrovic, Srdjan, Weiss, Gary

论文摘要

我们提供了一种新的视角,并在1971年的Pearcy上有一些进步 - 在这个问题上是一个问题:每个紧凑型操作员是否都是紧凑型操作员的换向者?我们的目标是分析和概括1970年在乔尔·安德森(Joel Anderson)领域的作品,并结合了本文的最后一位作者的作品。我们将一般问题减少到具有规范限制的有限矩阵方程的更简单的序列,同时又制定了反例的策略。我们的方法是询问哪些紧凑型运营商$ t $是换向器$ ab-ba $ ab-ba $ compact运营商$ a,b $;并分析乔尔·安德森(Joel Anderson)对这个问题的贡献的含义,这将产生其方法的概括。通过扩展Anderson [1]的技术,我们获得了新型的运营商,这些操作员是紧凑型运营商的换向器,而不是[17]和[2]中获得的操作员。通过采用最后一个命名作者的技术[22],我们发现了扩展安德森(Anderson)技术的障碍,以$ t $的某些约束,特别关注$ t $是一个严格的正面紧凑型对角线运算符。其中一些约束涉及一般的通用块Tridiagonal矩阵表单,而有些则涉及$ \ MATHCAL {B(H)} $ - 理想约束。就这些矩阵形式而言,我们给出了一些等效性,一些足够的条件和一些必要的条件,以解决这个问题 - 提出的问题及其各种分支以保持真实。这些矩阵形式是对操作员的矩阵表示的稀疏(通过改变基础的零零比例增加),我们测量了这些形式的支撑密度。最后,我们为Pearcy提供了一些必要的条件 - 涉及单数字和$ \ Mathcal {B(H)} $的问题 - 理想的约束。

We offer a new perspective and some advances on the 1971 Pearcy--Topping problem: Is every compact operator a commutator of compact operators? Our goal is to analyze and generalize the 1970's work in this area of Joel Anderson combined with the work of the last named author of this paper. We reduce the general problem to a simpler sequence of finite matrix equations with norm constraints, while at the same time developing strategies for counterexamples. Our approach is to ask which compact operators $T$ are commutators $AB-BA$ of compact operators $A,B$; and to analyze the implications of Joel Anderson's contributions to this problem, which will yield a generalization of his method. By extending the techniques of Anderson [1] we obtain new classes of operators that are commutators of compact operators beyond those obtained in [17] and [2]. And by employing the techniques of the last named author [22], we found obstructions to extending Anderson's techniques in terms of certain constraints for $T$, with special focus on when $T$ is a strictly positive compact diagonal operator. Some of these constraints involve general universal block tridiagonal matrix forms for operators, and some involve $\mathcal{B(H)}$-ideal constraints. And in terms of these matrix forms, we give some equivalences, some sufficient conditions and some necessary conditions for this Pearcy--Topping problem and its various offshoots to hold true. These matrix forms are a sparsification of matrix representations of an operator (an increase in the proportion of zeros in its corners by a change of basis) and we measure the support density of these forms. And finally we provide some necessary conditions for the Pearcy--Topping problem involving singular numbers and $\mathcal{B(H)}$-ideal constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源