论文标题

Neurips 2021 Nethack Challenge的见解

Insights From the NeurIPS 2021 NetHack Challenge

论文作者

Hambro, Eric, Mohanty, Sharada, Babaev, Dmitrii, Byeon, Minwoo, Chakraborty, Dipam, Grefenstette, Edward, Jiang, Minqi, Jo, Daejin, Kanervisto, Anssi, Kim, Jongmin, Kim, Sungwoong, Kirk, Robert, Kurin, Vitaly, Küttler, Heinrich, Kwon, Taehwon, Lee, Donghoon, Mella, Vegard, Nardelli, Nantas, Nazarov, Ivan, Ovsov, Nikita, Parker-Holder, Jack, Raileanu, Roberta, Ramanauskas, Karolis, Rocktäschel, Tim, Rothermel, Danielle, Samvelyan, Mikayel, Sorokin, Dmitry, Sypetkowski, Maciej, Sypetkowski, Michał

论文摘要

在本报告中,我们总结了第一个Neurips 2021 Nethack Challenge的收获。参与者的任务是开发一个可以赢得(即“上升”)的计划或代理商,通过与Nethack学习环境(NLE)互动(NLE),这是一种受欢迎的Nethack的Dungeon-Crawler游戏,这是一种可扩展的,程序性生成的,并且具有挑战性的健身房环境,以增强增强学习(RL)。挑战表明,以多种多样的方法在AI中以社区为导向的进步极大地超过了Nethack的最佳成绩。此外,它是神经(例如深RL)和符号AI以及混合系统之间的直接比较,表明在Nethack符号机器人上,当前的符号机器人当前的表现优于深度RL。最后,没有代理人接近赢得比赛,这说明了Nethack作为AI研究的长期基准的适用性。

In this report, we summarize the takeaways from the first NeurIPS 2021 NetHack Challenge. Participants were tasked with developing a program or agent that can win (i.e., 'ascend' in) the popular dungeon-crawler game of NetHack by interacting with the NetHack Learning Environment (NLE), a scalable, procedurally generated, and challenging Gym environment for reinforcement learning (RL). The challenge showcased community-driven progress in AI with many diverse approaches significantly beating the previously best results on NetHack. Furthermore, it served as a direct comparison between neural (e.g., deep RL) and symbolic AI, as well as hybrid systems, demonstrating that on NetHack symbolic bots currently outperform deep RL by a large margin. Lastly, no agent got close to winning the game, illustrating NetHack's suitability as a long-term benchmark for AI research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源