论文标题

神经容量估计的观点:可行性和可靠性

A Perspective on Neural Capacity Estimation: Viability and Reliability

论文作者

Mirkarimi, Farhad, Rini, Stefano, Farsad, Nariman

论文摘要

最近,已经提出了几种使用深层神经网络从样本数据中估算相互信息的方法。这些估计值AR被称为神经相互信息估计(NMIE)。 NMIE与其他方法不同,因为它们是数据驱动的估计器。因此,他们有可能在大量的容量问题上表现良好。为了测试各种NMIE的性能,希望建立一个基准,包括能力估计的不同挑战。这是本文的目的。特别是,我们考虑了基准测试的三种方案:I经典AWGN通道,II通道连续输入光强度和峰值限制的AWGN通道III通道具有离散输出,即Poisson Channel。我们还考虑了IV AWGN和光学MAC模型的多末端情况的扩展。我们认为,在这四种情况下对某些NMIE进行基准测试提供了对性能的实质性测试。在本文中,我们研究了相互信息神经估计器(MINE)的性能,平滑的相互信息下限估计器(Smile)和定向信息神经估计器(DINE)的性能。并提供有关其他方法的性能的见解。为了总结我们的基准测试结果,我提供了最可靠的性能。

Recently, several methods have been proposed for estimating the mutual information from sample data using deep neural networks. These estimators ar referred to as neural mutual information estimation (NMIE)s. NMIEs differ from other approaches as they are data-driven estimators. As such, they have the potential to perform well on a large class of capacity problems. In order to test the performance across various NMIEs, it is desirable to establish a benchmark encompassing the different challenges of capacity estimation. This is the objective of this paper. In particular, we consider three scenarios for benchmarking:i the classic AWGN channel, ii channels continuous inputs optical intensity and peak-power constrained AWGN channel iii channels with a discrete output, i.e., Poisson channel. We also consider the extension to the multi-terminal case with iv the AWGN and optical MAC models. We argue that benchmarking a certain NMIE across these four scenarios provides a substantive test of performance. In this paper we study the performance of mutual information neural estimator (MINE), smoothed mutual information lower-bound estimator (SMILE), and directed information neural estimator (DINE). and provide insights on the performance of other methods as well. To summarize our benchmarking results, MINE provides the most reliable performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源