论文标题

一种用于自动化天线设计和优化的机器学习生成方法

A Machine Learning Generative Method for Automating Antenna Design and Optimization

论文作者

Zhong, Yang, Renner, Peter, Dou, Weiping, Ye, Geng, Zhu, Jiang, Liu, Qing Huo

论文摘要

为了借助计算机来促进天线设计,消费电子行业的一种实践之一是使用简化的天线几何方案对天线性能进行建模和优化。传统的天线建模需要对电磁学的深刻先验知识,以实现良好的设计,以满足天线和产品设计的性能规格。处理多维优化问题以及对域知识和经验的依赖性较小,这是实现模拟驱动的天线设计和对行业优化的普及的关键。在本文中,我们引入了一种具有网格网络概念的灵活几何方案,该方案可以通过连接不同的节点来形成任何任意形状。对于具有高维参数的此类问题,我们提出了一种基于机器学习的生成方法,以帮助搜索最佳解决方案。它由歧视者和发电机组成。鉴别器用于预测几何模型的性能,以及生成器创建将通过歧视者的新候选者。此外,提出了一种进化标准方法,以进一步提高我们方法的效率。最后,不仅可以找到最佳的解决方案,而且训练有素的发电机也可以用于自动化未来的天线设计和优化。对于具有较宽带宽的双共振天线设计,我们提出的方法与信任区域框架相当,并且比其他成熟的机器学习算法(包括广泛使用的遗传算法和粒子群优化)要好得多。当没有宽带的带宽要求时,它比信任区域框架更好。

To facilitate the antenna design with the aid of computer, one of the practices in consumer electronic industry is to model and optimize antenna performances with a simplified antenna geometric scheme. Traditional antenna modeling requires profound prior knowledge of electromagnetics in order to achieve a good design which satisfies the performance specifications from both antenna and product designs. The ease of handling multidimensional optimization problems and the less dependence on domain knowledge and experience are the key to achieve the popularity of simulation driven antenna design and optimization for the industry. In this paper, we introduce a flexible geometric scheme with the concept of mesh network that can form any arbitrary shape by connecting different nodes. For such problems with high dimensional parameters, we propose a machine learning based generative method to assist the searching of optimal solutions. It consists of discriminators and generators. The discriminators are used to predict the performance of geometric models, and the generators to create new candidates that will pass the discriminators. Moreover, an evolutionary criterion approach is proposed for further improving the efficiency of our method. Finally, not only optimal solutions can be found, but also the well trained generators can be used to automate future antenna design and optimization. For a dual resonance antenna design with wide bandwidth, our proposed method is in par with Trust Region Framework and much better than the other mature machine learning algorithms including the widely used Genetic Algorithm and Particle Swarm Optimization. When there is no wide bandwidth requirement, it is better than Trust Region Framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源