论文标题

贝叶斯学习图子结构

Bayesian Learning of Graph Substructures

论文作者

Boom, Willem van den, De Iorio, Maria, Beskos, Alexandros

论文摘要

图形模型为学习多元数据中的条件独立性结构提供了强大的方法。推论通常集中于估计潜在图中的单个边缘。但是,由于多种原因,包括更有效的信息检索和更好的解释性,推断出更复杂的结构(例如社区)的兴趣越来越大。随机BlockModels提供了一个强大的工具来检测网络中的结构。因此,我们建议利用随机图理论中的进步,并将其嵌入图形模型框架中。这种方法的结果是对大规模结构学习的图表估计中的不确定性传播。我们将贝叶斯非参数随机块模型视为图的先验。我们扩展了这样的模型,以考虑基于集团的块和多个图形设置,这些图形设置基于依赖的dirichlet过程引入了新的先验过程。此外,我们根据野蛮的豆制比率设计了贝叶斯因子的量身定制的计算策略,以测试图中存在较大结构的情况。我们证明了我们在仿真以及金融和转录组学中的实际数据应用方面的方法。

Graphical models provide a powerful methodology for learning the conditional independence structure in multivariate data. Inference is often focused on estimating individual edges in the latent graph. Nonetheless, there is increasing interest in inferring more complex structures, such as communities, for multiple reasons, including more effective information retrieval and better interpretability. Stochastic blockmodels offer a powerful tool to detect such structure in a network. We thus propose to exploit advances in random graph theory and embed them within the graphical models framework. A consequence of this approach is the propagation of the uncertainty in graph estimation to large-scale structure learning. We consider Bayesian nonparametric stochastic blockmodels as priors on the graph. We extend such models to consider clique-based blocks and to multiple graph settings introducing a novel prior process based on a Dependent Dirichlet process. Moreover, we devise a tailored computation strategy of Bayes factors for block structure based on the Savage-Dickey ratio to test for presence of larger structure in a graph. We demonstrate our approach in simulations as well as on real data applications in finance and transcriptomics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源