论文标题
衍生的Zeta功能,用于有限场上的曲线
Derived Zeta Functions for Curves over Finite Fields
论文作者
论文摘要
对于每个$(m+1)$ - 元组$ {\ bf n} _m =(n_0,n_1,\ ldots,n_m)$的正整数$ n} _m)}(s)$定义为曲线$ x $上的$ \ mathbb f_q $。此得出的ZETA函数满足标准的Zeta属性。特别是,类似于$ x/\ mathbb f_q $的artin zeta函数,此$ {\ bf n} _m $ $ $ $ x $ over $ x $ over $ \ mathbb f_q $的Zeta Zeta函数是$ 2G $ $ 2G $ poldonomial $ P_ $ t _ {{{\ bf n} _m} = q^{ - s \ s \ prod_ {k = 0}^mn_k} $ by $(1-t _ {{\ bf n} _mm} _mm}) n} _m})t _ {{\ bf n} _m}^{g-1} $带有$ q _ {{{\ bf n} _m} = q^{\ prod_ {k = 0}^mn_k} $。实际上,我们有$$ \ begin {Aligned}&\ wideHatζ_{x,\ Mathbb f_q}^{\,({\ bf n} _ {m} _ {m})}(s)= \ wideHat z____________________________________ n} _ {m})}(t _ {{{\ bf n} _ {m}})\\ =&\ left(\ sum _ {\ sum _ {\ ell = 0}^{g-2} {g-2}α___ n} _ {m})}(\ ell)\ big(t _ {{\ bf n} _ {m}}}^{\ ell-(g-1)}+q _ {{\ bf n} n} _ {m}}^{(g-1) - \ ell} \ big) +α_{x,x,\ mathbb f_q}^{({\ bf n} _ {m} _ {m})}}}(g-1)}(g-1)(g-1)(g-1))\ big)\ right)\ right) n} _ {m}} - 1) n} _ {m}})(1- q _ {{{\ bf n} _ {m}} t _ {{{\ bf n} _ {m}}}} \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ bf n} $ - f_q $。此外,当$ x $限制到椭圆曲线时,或者当$ {\ bf n} _m =(2,2,\ ldots 2)$时,确定的是$ {\ bf n} _m $ $ $ $ $ $ $ $ $ $ $ $ \ wide的所有zeros,则f_q}^{\,(({\ bf n} _ {m})}(s)$位于中心行$ \ re(s)= \ frac {1} {2} $上。此外,正式是积极的猜想,声称上述$ {\ bf n} _m $ $ $衍生的alpha和beta不变性都是严格的积极性。
For each $(m+1)$-tuple ${\bf n}_m=(n_0,n_1,\ldots,n_m)$ of positive integers, the ${\bf n}_m$-derived zeta function $\widehatζ_{X,\mathbb F_q}^{\,({\bf n}_m)}(s)$ is defined for a curve $X$ over $\mathbb F_q$. This derived zeta function satisfies standard zeta properties. In particular, similar to the Artin Zeta function of $X/\mathbb F_q$, this ${\bf n}_m$-derived Zeta function of $X$ over $\mathbb F_q$ is a ratio of a degree $2g$ polynomial $P_{X,\mathbb F_q}^{({\bf n}_m)}$ in $T_{{\bf n}_m}=q^{-s\prod_{k=0}^mn_k}$ by $(1-T_{{\bf n}_m})(1-q_{{\bf n}_m}T_{{\bf n}_m})T_{{\bf n}_m}^{g-1}$ with $q_{{\bf n}_m}=q^{\prod_{k=0}^mn_k}$. Indeed, we have $$\begin{aligned} &\widehat ζ_{X,\mathbb F_q}^{\,({\bf n}_{m})}(s)=\widehat Z_{X,\mathbb F_q}^{\,({\bf n}_{m})}(T_{{\bf n}_{m}})\\ =& \left(\sum_{\ell=0}^{g-2}α_{X,\mathbb F_q}^{({\bf n}_{m})}(\ell)\Big(T_{{\bf n}_{m}}^{\ell-(g-1)}+q_{{\bf n}_{m}}^{(g-1)-\ell}T_{{\bf n}_{m}}^{(g-1)-\ell}\Big) +α_{X,\mathbb F_q}^{({\bf n}_{m})}(g-1))\Big)\right)+\frac{(q_{{\bf n}_{m}}-1)T_{{\bf n}_{m}}β_{X,\mathbb F_q}^{({\bf n}_{m})}}{(1-T_{{\bf n}_{m}})(1-q_{{\bf n}_{m}}T_{{\bf n}_{m}})}\\ \end{aligned}$$ for some ${\bf n}_m$-derived alpha and beta invariants of $X/\mathbb F_q$. Furthermore, when $X$ restrict to an elliptic curve, or when ${\bf n}_m=(2,2,\ldots 2)$, established is the ${\bf n}_m$-derived Riemann hypothesis claiming that all zeros of $\widehat ζ_{X,\mathbb F_q}^{\,({\bf n}_{m})}(s)$ lie on the central line $\Re(s)=\frac{1}{2}$. In addition, formulated is the Positivity Conjecture claiming that the above ${\bf n}_m$-derived alpha and beta invariants are all strict positivity.