论文标题
Hypershot:内核Hyper Nnetworks的少数学习
HyperShot: Few-Shot Learning by Kernel HyperNetworks
论文作者
论文摘要
很少有拍摄模型旨在使用给定任务中的标记示例数量最少进行预测。该领域的主要挑战是只有一个元素代表每个类的单次设置。我们提出了Hypershot-内核和超网范式的融合。与应用基于梯度调整的参数调整的参考方法相比,我们的模型旨在根据任务的嵌入来切换分类模块参数。实际上,我们利用了一项超网络,该网络从支持数据中获取汇总信息,并返回分类器的参数手工制作的用于考虑的问题。此外,我们介绍了基于内核的支持示例的表示,该示例传递给了Hyper Newetwork,以创建分类模块的参数。因此,我们依靠支持示例的嵌入之间的关系,而不是主干模型提供的直接特征值。由于这种方法,我们的模型可以适应高度不同的任务。
Few-shot models aim at making predictions using a minimal number of labeled examples from a given task. The main challenge in this area is the one-shot setting where only one element represents each class. We propose HyperShot - the fusion of kernels and hypernetwork paradigm. Compared to reference approaches that apply a gradient-based adjustment of the parameters, our model aims to switch the classification module parameters depending on the task's embedding. In practice, we utilize a hypernetwork, which takes the aggregated information from support data and returns the classifier's parameters handcrafted for the considered problem. Moreover, we introduce the kernel-based representation of the support examples delivered to hypernetwork to create the parameters of the classification module. Consequently, we rely on relations between embeddings of the support examples instead of direct feature values provided by the backbone models. Thanks to this approach, our model can adapt to highly different tasks.