论文标题

用对称的1D二次klein-gordon方程的孤子动力学

Soliton dynamics for the 1D quadratic Klein-Gordon equation with symmetry

论文作者

Li, Yongming, Luhrmann, Jonas

论文摘要

我们在不稳定的孤子的局部能量标准中建立条件渐近稳定性,用于在甚至扰动下的一维二维klein-gordon方程。该问题的一个关键特征是线性化操作员周围表现出的正间隙特征值。我们的证明是基于几种病毒类型的估计值,结合了一系列作品[23-26,28]的技术,并明确验证了费米的黄金法则。该方法取决于即使扰动也与线性化运算符的奇数阈值共振正交。

We establish the conditional asymptotic stability in a local energy norm of the unstable soliton for the one-dimensional quadratic Klein-Gordon equation under even perturbations. A key feature of the problem is the positive gap eigenvalue exhibited by the linearized operator around the soliton. Our proof is based on several virial-type estimates, combining techniques from the series of works [23-26, 28], and an explicitly verified Fermi Golden Rule. The approach hinges on the fact that even perturbations are orthogonal to the odd threshold resonance of the linearized operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源