论文标题

使用离散时钟构造的时间依赖的汉密尔顿模拟

Time Dependent Hamiltonian Simulation Using Discrete Clock Constructions

论文作者

Watkins, Jacob, Wiebe, Nathan, Roggero, Alessandro, Lee, Dean

论文摘要

与时间独立的汉密尔顿人相比,通用量子汉密尔顿人$ h(t)$的动态因进化运营商的时间订购而变得复杂。在数字量子模拟的背景下,这一难度阻止了时间依赖模拟的时间独立仿真算法的直接适应。但是,动态系统理论中存在一个框架,该框架通过添加“时钟”自由度来消除时间顺序。在这项工作中,我们基于此减少提供了一个计算框架,以将依赖时间动态编码为时间独立系统。结果,我们在数字哈密顿模拟方面取得了两个进步。首先,我们基于在增强时钟系统上执行Qubitization创建了一个依赖时间的仿真算法,然后为此提供了第一种基于Qubitization的方法,以超越有序指数的TROTTERTIATION。其次,我们定义了针对时间订购的指数的多生物公式的自然概括,然后根据这些公式提出和分析算法。与其他类似准确性的算法不同,多重驱动方法可以实现换向器的缩放量,这意味着该方法的表现优于现有的物理依赖时间依赖的汉密尔顿人的现有方法。我们的工作减少了时间依赖与时间独立模拟之间的差异,并指示了朝着最佳的量子模拟依赖时间的汉密尔顿人迈出的一步。

Compared with time independent Hamiltonians, the dynamics of generic quantum Hamiltonians $H(t)$ are complicated by the presence of time ordering in the evolution operator. In the context of digital quantum simulation, this difficulty prevents a direct adaptation of time independent simulation algorithms for time dependent simulation. However, there exists a framework within the theory of dynamical systems which eliminates time ordering by adding a "clock" degree of freedom. In this work, we provide a computational framework, based on this reduction, for encoding time dependent dynamics as time independent systems. As a result, we make two advances in digital Hamiltonian simulation. First, we create a time dependent simulation algorithm based on performing qubitization on the augmented clock system, and in doing so, provide the first qubitization-based approach to time dependent Hamiltonians that goes beyond Trotterization of the ordered exponential. Second, we define a natural generalization of multiproduct formulas for time-ordered exponentials, then propose and analyze an algorithm based on these formulas. Unlike other algorithms of similar accuracy, the multiproduct approach achieves commutator scaling, meaning that this method outperforms existing methods for physically-local time dependent Hamiltonians. Our work reduces the disparity between time dependent and time independent simulation and indicates a step towards optimal quantum simulation of time dependent Hamiltonians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源