论文标题
精确测定磁化铁和镍箔中的电子自旋极化的mølller极化法
Accurate Determination of the Electron Spin Polarization In Magnetized Iron and Nickel Foils for Møller Polarimetry
论文作者
论文摘要
弗吉尼亚州纽波特新闻的杰斐逊实验室A Hall A的Mølller极化计提供了对电子束极化的可靠测量,过去二十年达到了通常所需的$ \ pm $ \ pm $ 1 \%的绝对不确定性水平。但是,即将提出的包括MOLLER和固体在内的提议的实验程序对光束极化精度有严格的要求,在0.4 \%\ cite {Moller2014,Solid2019}的水平上,需要对所有贡献不确定性进行系统的重新检查。 Møller极化法使用具有极化原子电子的目标上极化电子束的双极化散射不对称。该靶标是一种磁性磁性的铁磁材料,可在给定方向上对齐旋转。在A厅中,目标是垂直于光束的纯铁箔,并从平行或与梁方向平行的平面平行或反平行处进行磁化。在大众框架中心,分析能力是最大值(-7/9)的中心,对检测器的接受已被设计为收集接近90 $^{\ circ} $的散射电子。 领先的系统误差之一来自确定目标箔极化。磁性饱和目标箔的极化需要了解饱和磁化和$ g^\ prime $,即电子$ g $ - $ $因素,其中包括来自自旋和轨道角动量的组件,从中确定了磁化磁化强度分数。本文利用现有的世界数据为镍箔和铁箔的目标极化提供了最佳估计,包括磁化,高场和温度依赖性的不确定性,以及对轨道效应对磁化的分数贡献。我们确定294〜K处的铝箔电子自旋极化为0.08020 $ \ pm $ 0.00018(@4〜T应用场),用于镍的箔电子和0.018845 $ \ pm0.000053 $(@2〜t应用领域)。
The Møller polarimeter in Hall A at Jefferson Lab in Newport News, VA, has provided reliable measurements of electron beam polarization for the past two decades reaching the typically required $\pm$1\% level of absolute uncertainty. However, the upcoming proposed experimental program including MOLLER and SoLID have stringent requirements on beam polarimetry precision at the level of 0.4\% \cite{MOLLER2014, SoLID2019}, requiring a systematic re-examination of all the contributing uncertainties. Møller polarimetry uses the double polarized scattering asymmetry of a polarized electron beam on a target with polarized atomic electrons. The target is a ferromagnetic material magnetized to align the spins in a given direction. In Hall A, the target is a pure iron foil aligned perpendicular to the beam and magnetized out of plane parallel or antiparallel to the beam direction. The acceptance of the detector is engineered to collect scattered electrons close to 90$^{\circ}$ in the center of mass frame where the analyzing power is a maximum (-7/9). One of the leading systematic errors comes from determination of the target foil polarization. Polarization of a magnetically saturated target foil requires knowledge of both the saturation magnetization and $g^\prime$, the electron $g$-factor which includes components from both spin and orbital angular momentum from which the spin fraction of magnetization is determined. This paper utilizes the existing world data to provide a best estimate for target polarization for both nickel and iron foils including uncertainties in magnetization, high-field and temperature dependence, and fractional contribution to magnetization from orbital effects. We determine the foil electron spin polarization at 294~K to be 0.08020$\pm$0.00018 (@4~T applied field) for iron and 0.018845$\pm0.000053$ (@2~T applied field) for nickel.