论文标题

Bruce-Roberts在ICIS上的功能数量

The Bruce-Roberts Numbers of a Function on an ICIS

论文作者

Lima-Pereira, Bárbara K., Nuño-Ballesteros, Juan José, Oréfice-Okamoto, Bruna, Tomazella, João Nivaldo

论文摘要

我们给出了布鲁斯·罗伯特人编号的公式$μ__{br}(f,x)$及其相对版本$μ__{br}^{ - } { - }(f,x)$相对于ICIS $(x,0)$。我们表明$μ_{br}^{ - }(f,x)=μ(f^{ - 1}(0)(0)\ cap x,0)+μ(x,0) - τ(x,0)$,其中$μ$和$μ$和$μ$和$τ$分别是ICIS的Milnor和Tjurina数字。 $μ_{br}(f,x)$的公式更为复杂,还涉及$μ(f)$,并且就理想$ i_x $和$ jf $而言。我们还考虑对数特性品种$ LC(x)$及其相对版本$ LC(x)^{ - } $。我们表明,$ LC(x)^{ - } $是Cohen-Macaulay,$ LC(x)$在任何时候都不是Cohen-Macaulay,niond note noce note noce note note not $ x \ times \ {0 \} $。当$(x,0)$具有编纂时,以及布鲁斯和罗伯茨的加权均匀时,我们会概括作者提出的先前结果。

We give formulas for the Bruce-Roberts number $μ_{BR}(f,X)$ and its relative version $μ_{BR}^{-}(f,X)$ of a function $f$ with respect to an ICIS $(X,0)$. We show that $μ_{BR}^{-}(f,X)=μ(f^{-1}(0)\cap X,0)+μ(X,0)-τ(X,0)$, where $μ$ and $τ$ are the Milnor and Tjurina numbers, respectively, of the ICIS. The formula for $μ_{BR}(f,X)$ is more complicated and also involves $μ(f)$ and some lengths in terms of the ideals $I_X$ and $Jf$. We also consider the logarithmic characteristic variety, $LC(X)$, and its relative version, $LC(X)^{-}$. We show that $LC(X)^{-}$ is Cohen-Macaulay and that $LC(X)$ is Cohen-Macaulay at any point not in $X\times\{0\}$. We generalize previous results presented by the authors when $(X,0)$ has codimension one and by Bruce and Roberts when it is weighted homogeneous of any codimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源