论文标题

广告中的分散总和规则$ _2 $

Dispersive Sum Rules in AdS$_2$

论文作者

Knop, Waltraut, Mazac, Dalimil

论文摘要

S型和CFT相关器的分散关系将UV的一致性转化为IR可观察物的界限。在本说明中,我们为1D CFT构建分散总和规则。我们使用它们来证明在ADS $ _2 $中弱耦合的非重构EFT中的高衍生耦合方面的界限。在批量限制的领先顺序下,边界与扁平空间结果一致。我们计算有限ADS半径对边界的主要普遍效应。一路上,我们在广义上的高衍生触点witten图中给出了一个明确的公式,以$ _2 $。

Dispersion relations for S-matrices and CFT correlators translate UV consistency into bounds on IR observables. In this note, we construct dispersive sum rules for 1D CFTs. We use them to prove bounds on higher-derivative couplings in weakly-coupled non-gravitational EFTs in AdS$_2$. At the leading order in the bulk-point limit, the bounds agree with the flat-space result. We compute the leading universal effect of finite AdS radius on the bounds. Along the way, we give an explicit formula for anomalous dimensions in general higher-derivative contact Witten diagrams in AdS$_2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源