论文标题

学习丰富的照明剂,用于交叉和单传感器颜色恒定

Learning Enriched Illuminants for Cross and Single Sensor Color Constancy

论文作者

Cun, Xiaodong, Wang, Zhendong, Pun, Chi-Man, Liu, Jianzhuang, Zhou, Wengang, Jia, Xu, Li, Houqiang

论文摘要

颜色稳定性旨在恢复不同照明剂下场景的恒定颜色。但是,由于存在摄像机光谱敏感性,因此在某个传感器上训练的网络对其他传感器的运行效果不佳。同样,由于培训数据集是在某些环境中收集的,因此照明剂的多样性受到复杂的现实世界预测的限制。在本文中,我们通过两个方面解决了这些问题。首先,我们提出了跨传播的自我监督培训来培训网络。详细说明,我们将当前可用数据集的一般SRGB图像和白色均衡原始图像视为白色平衡的代理。然后,我们通过以不依赖传感器的方式随机采样人工照明剂来训练网络,以重新定位和监督。其次,我们分析了以前的级联框架,并通过专门学习注意力共享主干参数来提出更紧凑,更准确的模型。实验表明,我们的交叉传感器模型和单传感器模型分别在交叉和单个传感器评估上分别超过其他最先进的方法,只有先前最佳模型的16%参数。

Color constancy aims to restore the constant colors of a scene under different illuminants. However, due to the existence of camera spectral sensitivity, the network trained on a certain sensor, cannot work well on others. Also, since the training datasets are collected in certain environments, the diversity of illuminants is limited for complex real world prediction. In this paper, we tackle these problems via two aspects. First, we propose cross-sensor self-supervised training to train the network. In detail, we consider both the general sRGB images and the white-balanced RAW images from current available datasets as the white-balanced agents. Then, we train the network by randomly sampling the artificial illuminants in a sensor-independent manner for scene relighting and supervision. Second, we analyze a previous cascaded framework and present a more compact and accurate model by sharing the backbone parameters with learning attention specifically. Experiments show that our cross-sensor model and single-sensor model outperform other state-of-the-art methods by a large margin on cross and single sensor evaluations, respectively, with only 16% parameters of the previous best model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源