论文标题

概率图像建模的新观点

A new perspective on probabilistic image modeling

论文作者

Gepperth, Alexander

论文摘要

我们介绍了深卷积高斯混合模型(DCGMM),这是一种用于图像建模的新概率方法,能够进行密度估计,采样和可拖动推理。 DCGMM实例显示出类似CNN的分层结构,其中主要构建块是卷积高斯混合物(CGMM)层。关键创新W.R.T.相关模型等相关模型(SPNS)和概率电路(PC)是每个CGMM层都可以优化独立的损失函数,因此具有独立的概率解释。这种模块化方法允许干预转换层,以利用CNN可用的(例如最大式或半互动)可用的(潜在不可换)映射。 DCGMM采样和推断是通过层次阶层的深链实现的,其中给定的CGMM层生成的样品定义了下一个较低的CGMM层中采样的参数。为了通过不可变形层进行采样,我们引入了一种新的基于梯度的锐化技术,该技术利用了冗余(重叠),例如半互动。 DCGMM可以从随机初始条件(类似于CNN)端对端训练。我们表明,DCGMM与推理,分类和采样方面相比,与最近的几个PC和SPN模型相比,后者尤其适用于诸如SVHN之类的挑战数据集。我们提供公共TF2实施。

We present the Deep Convolutional Gaussian Mixture Model (DCGMM), a new probabilistic approach for image modeling capable of density estimation, sampling and tractable inference. DCGMM instances exhibit a CNN-like layered structure, in which the principal building blocks are convolutional Gaussian Mixture (cGMM) layers. A key innovation w.r.t. related models like sum-product networks (SPNs) and probabilistic circuits (PCs) is that each cGMM layer optimizes an independent loss function and therefore has an independent probabilistic interpretation. This modular approach permits intervening transformation layers to harness the full spectrum of (potentially non-invertible) mappings available to CNNs, e.g., max-pooling or half-convolutions. DCGMM sampling and inference are realized by a deep chain of hierarchical priors, where a sample generated by a given cGMM layer defines the parameters of sampling in the next-lower cGMM layer. For sampling through non-invertible transformation layers, we introduce a new gradient-based sharpening technique that exploits redundancy (overlap) in, e.g., half-convolutions. DCGMMs can be trained end-to-end by SGD from random initial conditions, much like CNNs. We show that DCGMMs compare favorably to several recent PC and SPN models in terms of inference, classification and sampling, the latter particularly for challenging datasets such as SVHN. We provide a public TF2 implementation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源