论文标题
通过图形神经网络学习弹性无线电资源管理政策
Learning Resilient Radio Resource Management Policies with Graph Neural Networks
论文作者
论文摘要
我们考虑了无线干扰网络中用户选择和电源控制的问题,其中包括通过共享无线介质与一组用户设备设备(UES)通信的多个访问点(AP)。为了达到高总比率,在确保所有用户的公平性的同时,我们通过可学习的松弛变量来制定弹性无线电资源管理(RRM)策略优化问题。我们在拉格朗日双重域中重新制定了问题,并表明我们可以使用一组有限的参数参数化RRM策略,这可以通过无处可比的原始双重方法来与松弛和双重变量一起训练,这要归功于事实证明的小小的双重性差距。我们使用可扩展的置换率图形神经网络(GNN)体系结构来根据瞬时通道条件得出的图形拓扑来参数化RRM策略。通过实验结果,我们验证了最小容量的约束是否适合基础网络配置和通道条件。我们进一步证明,与基线算法相比,由于这种适应性,我们提出的方法在平均利率和第5个百分位数之间取得了较高的权衡 - 量化资源分配决策中公平性水平的度量 - 与基线算法相比。
We consider the problems of user selection and power control in wireless interference networks, comprising multiple access points (APs) communicating with a group of user equipment devices (UEs) over a shared wireless medium. To achieve a high aggregate rate, while ensuring fairness across all users, we formulate a resilient radio resource management (RRM) policy optimization problem with per-user minimum-capacity constraints that adapt to the underlying network conditions via learnable slack variables. We reformulate the problem in the Lagrangian dual domain, and show that we can parameterize the RRM policies using a finite set of parameters, which can be trained alongside the slack and dual variables via an unsupervised primal-dual approach thanks to a provably small duality gap. We use a scalable and permutation-equivariant graph neural network (GNN) architecture to parameterize the RRM policies based on a graph topology derived from the instantaneous channel conditions. Through experimental results, we verify that the minimum-capacity constraints adapt to the underlying network configurations and channel conditions. We further demonstrate that, thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the 5th percentile rate -- a metric that quantifies the level of fairness in the resource allocation decisions -- as compared to baseline algorithms.