论文标题

求解散射波函数的低级张量组件

Solving for the low-rank tensor components of a scattering wave function

论文作者

Snoeijer, Jacob, Vanroose, Wim

论文摘要

驱动的schrödinger方程描述了原子和分子分解反应,例如多离子化。该方程等于高维赫尔姆霍尔兹方程,它具有从目标中出现的传出波的解决方案。我们表明这些波可以通过低级别近似来描述。对于2D问题,这是两个低级矩阵的矩阵产物,对于3D问题,这是一个低级张量分解。我们提出了一种迭代方法,该方法以交替的方式解决了散射波的这些低级组件。我们用2D和3D中的示例说明了该方法。

Atomic and molecular breakup reactions, such as multiple-ionisation, are described by a driven Schrödinger equation. This equation is equivalent to a high-dimensional Helmholtz equation and it has solutions that are outgoing waves, emerging from the target. We show that these waves can be described by a low-rank approximation. For 2D problems this it a matrix product of two low-rank matrices, for 3D problems it is a low-rank tensor decomposition. We propose an iterative method that solves, in an alternating way, for these low-rank components of the scattered wave. We illustrate the method with examples in 2D and 3D.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源