论文标题
使用图像处理和几何计算对目标车辆的地理位置估算
Geolocation estimation of target vehicles using image processing and geometric computation
论文作者
论文摘要
估算车辆的位置是智能交通管理系统(ITMS)中提高交通现场意识的关键组成部分之一。传统上,在这方面使用了固定传感器。在现代车辆(MV)上的高级传感和通信技术的开发使使用移动传感器之类的车辆来估算观察到的车辆的交通数据是可行的。这项研究旨在探索安装在MV上的单眼相机的功能,以估算全球定位系统(GPS)坐标系统中观察到的车辆的地理位置。我们通过整合深度学习,图像处理和几何计算来解决观察到的车辆定位问题,提出了一种新方法。为了评估我们提出的方法,我们开发了新算法并使用现实世界流量数据对其进行了测试。结果表明,我们提出的方法论和算法可以有效地估计所观察到的车辆的纬度和经度。
Estimating vehicles' locations is one of the key components in intelligent traffic management systems (ITMSs) for increasing traffic scene awareness. Traditionally, stationary sensors have been employed in this regard. The development of advanced sensing and communication technologies on modern vehicles (MVs) makes it feasible to use such vehicles as mobile sensors to estimate the traffic data of observed vehicles. This study aims to explore the capabilities of a monocular camera mounted on an MV in order to estimate the geolocation of the observed vehicle in a global positioning system (GPS) coordinate system. We proposed a new methodology by integrating deep learning, image processing, and geometric computation to address the observed-vehicle localization problem. To evaluate our proposed methodology, we developed new algorithms and tested them using real-world traffic data. The results indicated that our proposed methodology and algorithms could effectively estimate the observed vehicle's latitude and longitude dynamically.