论文标题

沃特金斯(Watkins)的椭圆形曲线的猜想

Watkins' conjecture for elliptic curves over function fields

论文作者

Caro, Jerson

论文摘要

在2002年,沃特金斯(Watkins)猜想,鉴于椭圆曲线定义了$ \ mathbb {q} $,其mordell-weil等级最多是其模块化度的$ 2 $ adiC估值。我们考虑了积极特征的功能领域的类似问题,并且在某些情况下证明了这一点。更准确地说,每条模块化半稳定的椭圆曲线均超过$ \ mathbb {f} _q(t)$,在扩展了恒定的标量后,以及$ \ mathbb {f} _q(f} _q(t)$的每个二次旋转,由多态度由多个元素与wat soguils of watkins'conluce of watkins'conluine'contuins'contuins'''此外,对于由于乌尔默(Ulmer)而闻名的椭圆形曲线的著名家族,我们证明了沃特金斯(Watkins)的猜想的类似物。

In 2002 Watkins conjectured that given an elliptic curve defined over $\mathbb{Q}$, its Mordell-Weil rank is at most the $2$-adic valuation of its modular degree. We consider the analogous problem over function fields of positive characteristic, and we prove it in several cases. More precisely, every modular semi-stable elliptic curve over $\mathbb{F}_q(T)$ after extending constant scalars, and every quadratic twist of a modular elliptic curve over $\mathbb{F}_q(T)$ by a polynomial with sufficiently many prime factors satisfy the analogue of Watkins' conjecture. Furthermore, for a well-known family of elliptic curves with unbounded rank due to Ulmer, we prove the analogue of Watkins' conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源