论文标题
谁应该审查您的建议?研究建议的跨学科主题路径检测
Who Should Review Your Proposal? Interdisciplinary Topic Path Detection for Research Proposals
论文作者
论文摘要
对研究提案的同行绩效审查一直是决定授予奖励的主要机制。如今,研究建议已变得越来越跨学科。向适当的审阅者提出建议是一个长期的挑战。审阅者分配的关键步骤之一是为提案生成准确的跨学科主题标签。现有系统主要收集学科研究人员手动报告的主题标签。但是,这样的人类报告的标签可能是非准确和不完整的。 AI可以在开发公平而精确的提案审查系统中扮演什么角色?在这项证据研究中,我们与中国国家科学基金会合作解决了自动跨学科主题路径检测的任务。为此,我们开发了一个深层的分层跨学科研究建议分类网络(HIRPCN)。我们首先提出了一个分层变压器,以提取建议的文本语义信息。然后,我们设计了一个跨学科图形,并利用GNNS学习每个学科的表示形式,以提取跨学科知识。在提取语义和跨学科知识之后,我们设计了一个水平的预测组成部分,以融合两种类型的知识表示并检测每个建议的跨学科主题路径。我们对三个现实世界数据集进行了广泛的实验和专家评估,以证明我们提出的模型的有效性。
The peer merit review of research proposals has been the major mechanism to decide grant awards. Nowadays, research proposals have become increasingly interdisciplinary. It has been a longstanding challenge to assign proposals to appropriate reviewers. One of the critical steps in reviewer assignment is to generate accurate interdisciplinary topic labels for proposals. Existing systems mainly collect topic labels manually reported by discipline investigators. However, such human-reported labels can be non-accurate and incomplete. What role can AI play in developing a fair and precise proposal review system? In this evidential study, we collaborate with the National Science Foundation of China to address the task of automated interdisciplinary topic path detection. For this purpose, we develop a deep Hierarchical Interdisciplinary Research Proposal Classification Network (HIRPCN). We first propose a hierarchical transformer to extract the textual semantic information of proposals. We then design an interdisciplinary graph and leverage GNNs to learn representations of each discipline in order to extract interdisciplinary knowledge. After extracting the semantic and interdisciplinary knowledge, we design a level-wise prediction component to fuse the two types of knowledge representations and detect interdisciplinary topic paths for each proposal. We conduct extensive experiments and expert evaluations on three real-world datasets to demonstrate the effectiveness of our proposed model.