论文标题
临界渗透簇的普遍扩散率的通用波动和奇迹性
Universal fluctuations and ergodicity of generalized diffusivity on critical percolation clusters
论文作者
论文摘要
尽管历史悠久,并且对随机步行的属性具有清晰的整体理解,但在渗透过程中的初期无限群集上,文献中似乎缺少了一些重要的信息。在目前的工作中,我们通过对此类簇上的(子)扩散进行大量数值模拟来重新审视问题。因此,我们讨论了粒子位移的概率密度函数(PDF)的形状,以及其收敛到其长期限制缩放形式的方式。此外,我们讨论了粒子在临界时无限簇扩散的平均平方位移(MSD)的特性。众所周知,这不是自我平衡。我们表明,在集群的不同实现中,MSD的波动是通用的,并讨论了这些波动的分布的特性。这些强烈的波动与时域中延伸性行为的真实性共存。在时间平均MSD中波动的相对强度对总轨迹长度(总仿真时间)的相对强度的依赖性是在渗透系统中扩散的特征,可以用作额外的测试,以与其他相似行为(如具有相同的hurst hurst oppenent of Hurst Expenent of Hurst opentent of Hurst offents of the Cravision的过程)从偶然的行为中区分该过程。
Despite a long history and a clear overall understanding of properties of random walks on an incipient infinite cluster in percolation, some important information on it seems to be missing in the literature. In the present work, we revisit the problem by performing massive numerical simulations for (sub)diffusion of particles on such clusters. Thus, we discuss the shape of the probability density function (PDF) of particles' displacements, and the way it converges to its long-time limiting scaling form. Moreover, we discuss the properties of the mean squared displacement (MSD) of a particle diffusing on the infinite cluster at criticality. This one is known not to be self-averaging. We show that the fluctuations of the MSD in different realizations of the cluster are universal, and discuss the properties of the distribution of these fluctuations. These strong fluctuations coexist with the ergodicity of subdiffusive behavior in the time domain. The dependence of the relative strength of fluctuations in time-averaged MSD on the total trajectory length (total simulation time) is characteristic for diffusion in a percolation system and can be used as an additional test to distinguish this process with disorder-induced memory from processes with otherwise similar behavior, like fractional Brownian motion with the same value of the Hurst exponent.