论文标题

缩小和观察:假新闻检测的新闻环境感知

Zoom Out and Observe: News Environment Perception for Fake News Detection

论文作者

Sheng, Qiang, Cao, Juan, Zhang, Xueyao, Li, Rundong, Wang, Danding, Zhu, Yongchun

论文摘要

假新闻检测对于防止在社交媒体上传播错误信息至关重要。为了区分虚假新闻,现有方法观察新闻帖子的语言模式,并“放大”以使用知识源验证其内容或检查其读者的答复。但是,这些方法忽略了在外部新闻环境中创建和传播假新闻发布的信息。新闻环境代表了近期主流媒体的意见和公众关注,这是假新闻制造的重要灵感,因为假新闻通常旨在遍历流行事件的浪潮,并以意外的新颖内容引起公众关注,以增加曝光和传播。为了捕获新闻发布的环境信号,我们“缩小”以观察新闻环境并提出新闻环境感知框架(NEP)。对于每个帖子,我们都会从最近的主流新闻中构建其宏观和微型新闻环境。然后,我们设计了一个面向流行性的和新颖的模块,以感知有用的信号并进一步协助最终预测。我们新建的数据集中的实验表明,NEP可以有效地提高基本假新闻探测器的性能。

Fake news detection is crucial for preventing the dissemination of misinformation on social media. To differentiate fake news from real ones, existing methods observe the language patterns of the news post and "zoom in" to verify its content with knowledge sources or check its readers' replies. However, these methods neglect the information in the external news environment where a fake news post is created and disseminated. The news environment represents recent mainstream media opinion and public attention, which is an important inspiration of fake news fabrication because fake news is often designed to ride the wave of popular events and catch public attention with unexpected novel content for greater exposure and spread. To capture the environmental signals of news posts, we "zoom out" to observe the news environment and propose the News Environment Perception Framework (NEP). For each post, we construct its macro and micro news environment from recent mainstream news. Then we design a popularity-oriented and a novelty-oriented module to perceive useful signals and further assist final prediction. Experiments on our newly built datasets show that the NEP can efficiently improve the performance of basic fake news detectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源