论文标题

非凸变量问题的逆向空间迭代:连续和离散的情况

Inverse Scale Space Iterations for Non-Convex Variational Problems: The Continuous and Discrete Case

论文作者

Bednarski, Danielle, Lellmann, Jan

论文摘要

非线性滤波方法允许获得图像的分解相对于非古典尺度概念,这是由于选择凸的选择,绝对是单均匀的正规剂。可以使用具有二次数据术语的经典Bregman迭代获得相关的尺度空间流。我们将Bregman迭代应用于提升,即更高维和凸功能,以将这些方法的范围扩展到具有任意数据项的功能。在连续和离散的环境中,我们为正规器的亚级别提供条件,在这些环境下,此迭代启动降低了标准的Bregman迭代。我们显示了凸和非凸状情况的实验结果。

Non-linear filtering approaches allow to obtain decompositions of images with respect to a non-classical notion of scale, induced by the choice of a convex, absolutely one-homogeneous regularizer. The associated inverse scale space flow can be obtained using the classical Bregman iteration with quadratic data term. We apply the Bregman iteration to lifted, i.e. higher-dimensional and convex, functionals in order to extend the scope of these approaches to functionals with arbitrary data term. We provide conditions for the subgradients of the regularizer -- in the continuous and discrete setting -- under which this lifted iteration reduces to the standard Bregman iteration. We show experimental results for the convex and non-convex case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源