论文标题

随机环境中数据驱动的预测控制:统一框架

Data-driven predictive control in a stochastic setting: a unified framework

论文作者

Breschi, Valentina, Chiuso, Alessandro, Formentin, Simone

论文摘要

数据驱动的预测控制(DDPC)最近被提议作为传统模型预测性控制(MPC)的有效替代方案,因为它的独特特征是相对于Oracle解决方案的时间效率和公正。尽管如此,还观察到,噪声可能会严重危害最终的闭环性能,因为它会影响基于数据的系统表示和从在线测量中计算的控制更新。最近的研究表明,正则化可能是抵消噪声效果的成功工具。同时,正则化需要调整一组罚款条款,如果没有闭环实验,它们的选择实际上可能很困难。在本文中,通过子空间识别工具,我们追求一个三倍的目标:$(i)$,我们为现有的正规数据驱动的随机系统建立了一个统一的框架; $(ii)$我们引入了$γ$ -DDPC,这是一种有效的两阶段方案,将优化问题分为两个部分:安装初始条件并优化未来的性能,同时保证限制满意度; $(iii)$我们讨论了正规化在数据驱动的预测控制中的作用,从$和$ $如何应用$时提供了有关$的新见解。基准数值案例研究最终说明了$γ$ -DDPC的性能,显示了如何从调整工作和计算复杂性中简化控制器设计,从而受益于从子空间识别领域的见解。

Data-driven predictive control (DDPC) has been recently proposed as an effective alternative to traditional model-predictive control (MPC) for its unique features of being time-efficient and unbiased with respect to the oracle solution. Nonetheless, it has also been observed that noise may strongly jeopardize the final closed-loop performance since it affects both the data-based system representation and the control update computed from the online measurements. Recent studies have shown that regularization is potentially a successful tool to counteract the effect of noise. At the same time, regularization requires the tuning of a set of penalty terms, whose choice might be practically difficult without closed-loop experiments. In this paper, by means of subspace identification tools, we pursue a three-fold goal: $(i)$ we set up a unified framework for the existing regularized data-driven predictive control schemes for stochastic systems; $(ii)$ we introduce $γ$-DDPC, an efficient two-stage scheme that splits the optimization problem into two parts: fitting the initial conditions and optimizing the future performance, while guaranteeing constraint satisfaction; $(iii)$ we discuss the role of regularization for data-driven predictive control, providing new insight on $when$ and $how$ it should be applied. A benchmark numerical case study finally illustrates the performance of $γ$-DDPC, showing how controller design can be simplified in terms of tuning effort and computational complexity when benefiting from the insights coming from the subspace identification realm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源