论文标题

通过基于空间概念的拓扑语义映射的语音说明的分层路径计划

Hierarchical Path-planning from Speech Instructions with Spatial Concept-based Topometric Semantic Mapping

论文作者

Taniguchi, Akira, Ito, Shuya, Taniguchi, Tadahiro

论文摘要

通过自动移动机器人(尤其是对于没有专业知识的用户来说)协助个人进行日常活动至关重要。具体而言,机器人可以根据人类语音说明导航到目的地的能力至关重要。尽管机器人可以采取不同的路径,但最短的路径并不总是最好的。一种首选的方法是灵活适应Waypoint规范,即使在绕道而行,也计划改进的替代路径。此外,机器人需要实时推理功能。这项研究旨在使用语音指示(包括航点)的拓扑语义图和路径计划实现层次的空间表示。本文介绍了基于空间概念的层压语义映射,用于分层路径计划(SPCOTMHP),从而集成了位置连接性。这种方法提供了一种新型的综合概率生成模型和跨层次结构级别的快速近似推断。基于控制作为概率推理的公式在理论上支持所提出的路径计划算法。我们使用Toyota人类支持机器人在Sigverse Simulator上以及带有真正的机器人Albert的实验室办公室环境中进行了实验。用户发布了指定航路点和目标的语音命令,例如“通过走廊去卧室”。使用语音指示进行的导航实验表明,通过机器人达到最接近的目标并通过0.590的加权成功率,使用机器人达到最接近的目标并通过了正确的目标方面,SPCOTMHP在基线层次路径计划方法上的性能提高了启发式路径成本(HPP-I)的性能。与高级任务中的基线HPP-I相比,SPCOTMHP的计算时间显着加速了7.14秒。

Assisting individuals in their daily activities through autonomous mobile robots, especially for users without specialized knowledge, is crucial. Specifically, the capability of robots to navigate to destinations based on human speech instructions is essential. While robots can take different paths to the same goal, the shortest path is not always the best. A preferred approach is to accommodate waypoint specifications flexibly, planning an improved alternative path, even with detours. Additionally, robots require real-time inference capabilities. This study aimed to realize a hierarchical spatial representation using a topometric semantic map and path planning with speech instructions, including waypoints. This paper presents Spatial Concept-based Topometric Semantic Mapping for Hierarchical Path Planning (SpCoTMHP), integrating place connectivity. This approach offers a novel integrated probabilistic generative model and fast approximate inference across hierarchy levels. A formulation based on control as probabilistic inference theoretically supports the proposed path planning algorithm. We conducted experiments in home environments using the Toyota Human Support Robot on the SIGVerse simulator and in a lab-office environment with the real robot, Albert. Users issued speech commands specifying the waypoint and goal, such as "Go to the bedroom via the corridor." Navigation experiments using speech instructions with a waypoint demonstrated a performance improvement of SpCoTMHP over the baseline hierarchical path planning method with heuristic path costs (HPP-I), in terms of the weighted success rate at which the robot reaches the closest target and passes the correct waypoints, by 0.590. The computation time was significantly accelerated by 7.14 seconds with SpCoTMHP compared to baseline HPP-I in advanced tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源