论文标题

统一顶点代数和Wightman形式的田野理论

Unitary vertex algebras and Wightman conformal field theories

论文作者

Raymond, Christopher, Tanimoto, Yoh, Tener, James E.

论文摘要

我们证明了以下概念之间的等效性:(i)单一möbius顶点代数和(ii)圆圈上的wightman综合场理论(具有有限维度的形成型的重量空间)满足了我们称之为统一界限的其他条件。在一个方向上读取此等效性,我们获得了有关顶点操作员的新分析和操作者的理论信息。在另一个方向上,我们表征了Wightman领域的OPES,并表明它们满足顶点代数的公理。作为应用程序,我们建立了将单一顶点操作员代数与共形网链接的新结果。

We prove an equivalence between the following notions: (i) unitary Möbius vertex algebras, and (ii) Wightman conformal field theories on the circle (with finite-dimensional conformal weight spaces) satisfying an additional condition that we call uniformly bounded order. Reading this equivalence in one direction, we obtain new analytic and operator-theoretic information about vertex operators. In the other direction we characterize OPEs of Wightman fields and show they satisfy the axioms of a vertex algebra. As an application we establish new results linking unitary vertex operator algebras with conformal nets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源