论文标题
早期太阳系中的放射性核:分析由核心偏离超新星产生的15个同位素
Radioactive nuclei in the early Solar System: analysis of the 15 isotopes produced by core-collapse supernovae
论文作者
论文摘要
短寿命的放射性同位素(SLR),半衰期在0.1至100 MYR之间,可用于探测太阳系的起源。在这项工作中,我们检查了生产的15个SLR的核心崩溃的超新星的生产:$^{26} $ al,$^{36} $ cl,$^{41} $ ca,$^{53} $ mn,$^{60} $^{60} $^{60} $ fe,$^{92} $^{92} $ nb,$ nb,$ nb,$ nb,$ nb,$ nb,$^97} $^{97} $^{97} $^{97} $^{97} $^{97}, $^{107} $ pd,$^{126} $ sn,$^{129} $ i,$^{135} $ cs,$^{146} $ sm,$^{182} $ hf,和$^{205} $ pb。我们通过检查62个核心爆炸机制的不确定性的影响,其最初质量为15、20和25m $ _ {\ odot} $的62个核心崩溃模型,爆炸能量在3.4 $ \ times $ 10 $^{50 $^{50} $和1.8 $ \ $ \ $ \ \ $ \ \ \ \ $ 10 $ 10 $^$^$^$^$^52 $之间15m $ _ {\ odot} $和4.89亿$ _ {\ odot} $。我们确定了爆炸能量和残余质量对SLR最终产量的影响。恒星最内向区域中产生的同位素,例如$^{92} $ nb和$^{97} $ tc,是残留物质量影响最大的,$^{92} $ nb通过五个数量级变化。同位素主要在爆炸性的C燃烧和爆炸性He燃烧中合成,例如$^{60} $ Fe,受爆炸能量的影响最大。 $^{60} $ fe在15m $ _ {\ odot} $模型中从最低爆炸能量的最高爆炸能量增加了两个数量级。每个检查的SLR的最终产率用于与文献模型进行比较。
Short-lived radioactive isotopes (SLRs) with half-lives between 0.1 to 100 Myr can be used to probe the origin of the Solar System. In this work, we examine the core-collapse supernovae production of the 15 SLRs produced: $^{26}$Al, $^{36}$Cl, $^{41}$Ca, $^{53}$Mn, $^{60}$Fe, $^{92}$Nb, $^{97}$Tc, $^{98}$Tc, $^{107}$Pd, $^{126}$Sn, $^{129}$I, $^{135}$Cs, $^{146}$Sm, $^{182}$Hf, and $^{205}$Pb. We probe the impact of the uncertainties of the core-collapse explosion mechanism by examining a collection of 62 core-collapse models with initial masses of 15, 20, and 25M$_{\odot}$, explosion energies between 3.4$\times$10$^{50}$ and 1.8$\times$10$^{52}$ ergs and compact remnant masses between 1.5M$_{\odot}$and 4.89M$_{\odot}$. We identify the impact of both explosion energy and remnant mass on the final yields of the SLRs. Isotopes produced within the innermost regions of the star, such as $^{92}$Nb and $^{97}$Tc, are the most affected by the remnant mass, $^{92}$Nb varying by five orders of magnitude. Isotopes synthesised primarily in explosive C-burning and explosive He-burning, such as $^{60}$Fe, are most affected by explosion energies. $^{60}$Fe increases by two orders of magnitude from the lowest to the highest explosion energy in the 15M$_{\odot}$model. The final yield of each examined SLR is used to compare to literature models.