论文标题

谁分享假新闻?从社交媒体用户的帖子历史上揭示洞察力

Who Shares Fake News? Uncovering Insights from Social Media Users' Post Histories

论文作者

Schoenmueller, Verena, Blanchard, Simon J., Johar, Gita V.

论文摘要

我们建议社交媒体用户自己的帖子历史是研究假新人共享的一种未充分利用但宝贵的资源。通过从其先前帖子中提取文本提示,并将其与随机的社交媒体用户和其他人进行对比(例如,那些具有相似社会人口表,政治新闻社和事实检查者的人)可以识别出区别假新闻共享者的提示,可以预测那些最有可能共享假新闻的人,并确定有望建立的介入式介入以建立干预措施。我们的研究包括沿这些线路的研究。在研究1中,我们探讨了假新人共享者的独特语言模式,强调了诸如越来越多地使用愤怒和与权力有关的单词。在研究2中,我们表明,将文本提示添加到预测模型中可以增强其预测假新型共享者的准确性。在研究3中,我们探讨了特质和情境愤怒的对比作用,并且表现出特质愤怒与共享真实和假新闻的更大倾向有关。在研究4中,我们介绍了一种在调查中对Twitter帐户进行身份验证的方法,然后再探讨如何制作与用户的权力感共鸣的广告副本,以鼓励采用事实检查工具。我们希望鼓励为营销人员和错误信息研究人员使用新颖的研究方法。

We propose that social-media users' own post histories are an underused yet valuable resource for studying fake-news sharing. By extracting textual cues from their prior posts, and contrasting their prevalence against random social-media users and others (e.g., those with similar socio-demographics, political news-sharers, and fact-check sharers), researchers can identify cues that distinguish fake-news sharers, predict those most likely to share fake news, and identify promising constructs to build interventions. Our research includes studies along these lines. In Study 1, we explore the distinctive language patterns of fake-news sharers, highlighting elements such as their higher use of anger and power-related words. In Study 2, we show that adding textual cues into predictive models enhances their accuracy in predicting fake-news sharers. In Study 3, we explore the contrasting role of trait and situational anger, and show trait anger is associated with a greater propensity to share both true and fake news. In Study 4, we introduce a way to authenticate Twitter accounts in surveys, before using it to explore how crafting an ad copy that resonates with users' sense of power encourages the adoption of fact-checking tools. We hope to encourage the use of novel research methods for marketers and misinformation researchers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源