论文标题

用控制点的文档脱水

Document Dewarping with Control Points

论文作者

Xie, Guo-Wang, Yin, Fei, Zhang, Xu-Yao, Liu, Cheng-Lin

论文摘要

文档图像现在被手持设备(例如手机)广泛捕获。这些图像上的OCR性能在很大程度上受到了文档纸的几何变形,各种相机位置和复杂的背景的影响。在本文中,我们提出了一种简单而有效的方法,通过估计控制点和参考点来纠正扭曲的文档图像。之后,我们使用控制点和参考点之间的插值方法将稀疏映射转换为向后映射,并将原始扭曲的文档映像重新映射到整流的图像。此外,控制点可控制以促进相互作用或随后的调整。根据不同的应用程序方案,我们可以灵活地选择后处理方法和顶点数量。实验表明,我们的方法可以用各种失真类型纠正文档图像,并在现实世界数据集上产生最先进的性能。本文还提供了基于文档露水的控制点的培训数据集。代码和数据集都在https://github.com/gwxie/document-dewarping-with-control-points上发布。

Document images are now widely captured by handheld devices such as mobile phones. The OCR performance on these images are largely affected due to geometric distortion of the document paper, diverse camera positions and complex backgrounds. In this paper, we propose a simple yet effective approach to rectify distorted document image by estimating control points and reference points. After that, we use interpolation method between control points and reference points to convert sparse mappings to backward mapping, and remap the original distorted document image to the rectified image. Furthermore, control points are controllable to facilitate interaction or subsequent adjustment. We can flexibly select post-processing methods and the number of vertices according to different application scenarios. Experiments show that our approach can rectify document images with various distortion types, and yield state-of-the-art performance on real-world dataset. This paper also provides a training dataset based on control points for document dewarping. Both the code and the dataset are released at https://github.com/gwxie/Document-Dewarping-with-Control-Points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源