论文标题
用于在线更新推荐系统的元学习
Meta-Learning for Online Update of Recommender Systems
论文作者
论文摘要
在线推荐系统应始终与用户当前的兴趣保持一致,以准确建议每个用户想要的项目。由于用户兴趣通常会随着时间的推移而发展,因此应该灵活地将更新策略从连续生成的新用户项目交互中快速吸引用户当前的兴趣。现有的更新策略的重点是每个用户互动的重要性或每个建议参数的学习率,但是这种单向灵活性不足以适应交互与参数之间的不同关系。在本文中,我们提出了瓜(Melon),这是一种基于元学习的小说在线推荐更新策略,支持二向灵活性。它具有每个参数交互对的自适应学习率,以诱导推荐人快速学习用户的最新利息。通过元学习方法优化瓜的过程:它学习了推荐人如何学习为未来更新生成最佳学习率。具体而言,瓜首先根据先前的相互作用丰富了每种相互作用的含义,并识别每个参数在相互作用中的作用。然后结合这两个信息以产生自适应学习率。对三个现实世界推荐数据集的理论分析和广泛的评估验证了瓜的有效性。
Online recommender systems should be always aligned with users' current interest to accurately suggest items that each user would like. Since user interest usually evolves over time, the update strategy should be flexible to quickly catch users' current interest from continuously generated new user-item interactions. Existing update strategies focus either on the importance of each user-item interaction or the learning rate for each recommender parameter, but such one-directional flexibility is insufficient to adapt to varying relationships between interactions and parameters. In this paper, we propose MeLON, a meta-learning based novel online recommender update strategy that supports two-directional flexibility. It is featured with an adaptive learning rate for each parameter-interaction pair for inducing a recommender to quickly learn users' up-to-date interest. The procedure of MeLON is optimized following a meta-learning approach: it learns how a recommender learns to generate the optimal learning rates for future updates. Specifically, MeLON first enriches the meaning of each interaction based on previous interactions and identifies the role of each parameter for the interaction; and then combines these two pieces of information to generate an adaptive learning rate. Theoretical analysis and extensive evaluation on three real-world online recommender datasets validate the effectiveness of MeLON.