论文标题

clrnet:用于车道检测的跨层细化网络

CLRNet: Cross Layer Refinement Network for Lane Detection

论文作者

Zheng, Tu, Huang, Yifei, Liu, Yang, Tang, Wenjian, Yang, Zheng, Cai, Deng, He, Xiaofei

论文摘要

巷对于智能车辆的视觉导航系统至关重要。自然,巷道是一个具有高级语义的交通标志,而它拥有特定的本地模式,该图案需要详细的低级功能才能准确定位。对于准确的车道检测,使用不同的特征级别至关重要,但仍未探索。在这项工作中,我们提出了跨层改进网络(CLRNET),目的是在车道检测中充分利用高级和低级特征。特别是,它首先检测具有高级语义特征的车道,然后根据低级功能进行精炼。这样,我们可以利用更多的上下文信息来检测车道,同时利用本地详细的车道功能来提高本地化精度。我们向Roigather提出了收集全球环境,这进一步增强了车道的特征表示。除了新颖的网络设计外,我们还引入了IOU损失,该线路损失了整个单元的车道线以提高本地化精度。实验表明,所提出的方法极大地胜过最先进的车道检测方法。

Lane is critical in the vision navigation system of the intelligent vehicle. Naturally, lane is a traffic sign with high-level semantics, whereas it owns the specific local pattern which needs detailed low-level features to localize accurately. Using different feature levels is of great importance for accurate lane detection, but it is still under-explored. In this work, we present Cross Layer Refinement Network (CLRNet) aiming at fully utilizing both high-level and low-level features in lane detection. In particular, it first detects lanes with high-level semantic features then performs refinement based on low-level features. In this way, we can exploit more contextual information to detect lanes while leveraging local detailed lane features to improve localization accuracy. We present ROIGather to gather global context, which further enhances the feature representation of lanes. In addition to our novel network design, we introduce Line IoU loss which regresses the lane line as a whole unit to improve the localization accuracy. Experiments demonstrate that the proposed method greatly outperforms the state-of-the-art lane detection approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源