论文标题
在三个维度和相关问题的平面半代数对象的交叉点查询
Intersection Queries for Flat Semi-Algebraic Objects in Three Dimensions and Related Problems
论文作者
论文摘要
令$ \ mathcal {t} $为$ \ sailbebraic区域的一组$ \ mathbb {r}^3 $ convant Complactity(例如,三角形,磁盘),我们称之为plates。我们希望将$ \ MATHCAL {T} $预先添加到数据结构中,以便对于查询对象$γ$,这也是一个盘子,我们可以快速回答各种相交的查询,例如检测$ floss的$ \ \ \ \ \级{T} $的任何盘子,报告了所有均由$γ$相交或计数$γ$。我们还考虑了这种一般设置的两个更简单的情况:(i)输入对象是板,查询对象是$ \ m athbb {r}^3 $(短)或(arcs,对于简短),或(ii)输入对象是弧对象,而Query对象是$ \ \ \ bb c^33 33 33 3 $} 3 $ {rc.除了本身很有趣之外,这两个特殊情况的数据结构构成了处理一般案例的基础。 通过将多项式分区技术与来自实际代数几何形状的其他工具相结合,我们提供了许多不同的数据结构,用于相交查询,这些数据结构也提供了它们的大小和查询时间之间的权衡。例如,如果$ \ nathcal {t} $是一组板,查询对象是代数弧,我们将获得一个数据结构,该数据结构使用$ o^*(n^{4/3})$ storege(其中$ o^*(\ cdot)$ nide $ n^^$ $ smily $ε> 0 $ε>ε>ε>ε>ε>ε>ε>ε>ε>ε>ε>ε>ε>ε> 0 $ o^*(n^{2/3})$时间。该结果很重要,因为指数不取决于输入和查询对象的特定形状。我们概括并稍微改善了此结果:对于[n^{4/3}中的参数$ s \,n^{t_q}] $,其中$ {t_q} \ ge 3 $是指定查询时间所需的实际参数数量,可以将查询时间减少至$ o^*((n/s^{1/{t_q}}))^{\ tfrac {2/3} {1-1/{t_q}}}})$,通过将存储存储到$ o^**(s)$。
Let $\mathcal{T}$ be a set of $n$ flat (planar) semi-algebraic regions in $\mathbb{R}^3$ of constant complexity (e.g., triangles, disks), which we call plates. We wish to preprocess $\mathcal{T}$ into a data structure so that for a query object $γ$, which is also a plate, we can quickly answer various intersection queries, such as detecting whether $γ$ intersects any plate of $\mathcal{T}$, reporting all the plates intersected by $γ$, or counting them. We also consider two simpler cases of this general setting: (i) the input objects are plates and the query objects are constant-degree parametrized algebraic arcs in $\mathbb{R}^3$ (arcs, for short), or (ii) the input objects are arcs and the query objects are plates in $\mathbb{R}^3$. Besides being interesting in their own right, the data structures for these two special cases form the building blocks for handling the general case. By combining the polynomial-partitioning technique with additional tools from real algebraic geometry, we present many different data structures for intersection queries, which also provide trade-offs between their size and query time. For example, if $\mathcal{T}$ is a set of plates and the query objects are algebraic arcs, we obtain a data structure that uses $O^*(n^{4/3})$ storage (where the $O^*(\cdot)$ notation hides factors of the form $n^ε$, for an arbitrarily small $ε>0$) and answers an arc-intersection query in $O^*(n^{2/3})$ time. This result is significant since the exponents do not depend on the specific shape of the input and query objects. We generalize and slightly improve this result: for a parameter $s\in [n^{4/3}, n^{t_q}]$, where ${t_q}\ge 3$ is the number of real parameters needed to specify a query arc, the query time can be decreased to $O^*((n/s^{1/{t_q}})^{\tfrac{2/3}{1-1/{t_q}}})$ by increasing the storage to $O^*(s)$.