论文标题
Baryonic Tully-Fisher关系的转换和低星系质量的BARYON分数变化
The Turn-Down of the Baryonic Tully-Fisher Relation and Changing Baryon Fractions at Low Galaxy Masses
论文作者
论文摘要
在当今星系中,巴属与黑暗物质的比率限制了星系理论,可以通过Baryonic Tully-Fisher关系(BTFR)进行经验确定,该关系比较了星系的Baryonic质量(MBARY)与其最大旋转速度(VMAX)。 BTFR在Mbary> 10^8 MSUN时进行了明确的确定,但由于样品较小,在较低的质量和测量该方案中旋转速度的挑战方面受到限制。对于具有高质量数据和Mbary <〜10^8 MSUN的25个星系,我们从红外和HI观测值中估计Mbary以及HI气体旋转的VMAX。许多VMAX值是下限,因为速度仍在检测到的HI磁盘(RMAX)的边缘上升。因此,我们的大多数样品的速度比较高质量的BTFR外推的速度低。为了估算VMAX,我们将每个星系映射到暗物质光环,假设有和没有核心的密度曲线。与非计算的轮廓相反,我们发现与数据相似的RMAX值仍以RMAX值的速度上升。当我们比较从核密度曲线得出的VMAX值与我们的MBARY测量值时,我们发现BTFR在低质量下的转换与LCDM预测一致,并意味着BARYON分数为宇宙值的1-10%。尽管我们受到将测量旋转速度绘制为理论旋转曲线的样本量和假设的限制,但我们的结果表明,星系形成效率在Mbary 〜10^8 MSUN以下的质量下降,对应于Mhalo〜10^10 MSUN。
The ratio of baryonic-to-dark matter in present-day galaxies constrains galaxy formation theories and can be determined empirically via the baryonic Tully-Fisher relation (BTFR), which compares a galaxy's baryonic mass (Mbary) to its maximum rotation velocity (Vmax). The BTFR is well-determined at Mbary >10^8 Msun, but poorly constrained at lower masses due to small samples and the challenges of measuring rotation velocities in this regime. For 25 galaxies with high-quality data and Mbary <~10^8 Msun, we estimate Mbary from infrared and HI observations and Vmax from the HI gas rotation. Many of the Vmax values are lower limits because the velocities are still rising at the edge of the detected HI disks (Rmax); consequently, most of our sample has lower velocities than expected from extrapolations of the BTFR at higher masses. To estimate Vmax, we map each galaxy to a dark matter halo assuming density profiles with and without cores. In contrast to non-cored profiles, we find the cored profile rotation curves are still rising at Rmax values, similar to the data. When we compare the Vmax values derived from the cored density profiles to our Mbary measurements, we find a turndown of the BTFR at low masses that is consistent with LCDM predictions and implying baryon fractions of 1-10% of the cosmic value. Although we are limited by the sample size and assumptions inherent in mapping measured rotational velocities to theoretical rotation curves, our results suggest that galaxy formation efficiency drops at masses below Mbary~10^8 Msun, corresponding to Mhalo~10^10 Msun.