论文标题
半蛋白蛋
Semileptonic $B_{s}\to K_0^*(1430)$ transitions with the light-cone sum rules
论文作者
论文摘要
In the $\rm SU(3)_F$ symmetry limit, using two- and three-particle distribution amplitudes of $B^{\pm}$-meson for $B_s$, the transition form factors of semileptonic $B_{s}\to K_{0}^*(1430)$ decays are calculated in the framework of the light-cone sum rules. $φ_ {_ {+}}(ω)$和$φ_ {_ { - { - }}(ω)$具有最重要的贡献,估计$ f _ {+}(q^2)$,$ f _ {q^2) $φ_ {_+}(ω)$的行为的知识仍然相当有限。因此,我们考虑了$φ_ {_+}(ω)$的形状的三个不同的参数化,这些参数来自现象学模型。使用形式因子$ f _ {+} $,$ f _ { - } $和$ f_ {t} $,半蛋白质$ b_s \ to k_0^*(1430)l \ bar {v {ν_{ν_{l}}}} $ and $ b_s $ and $ b_s \ to K_0^*(1430)分析了τ$衰减。此外,还计算了上述衰减的分支级分,还计算了纵向Lepton极化不对称。提供了我们的结果与对其他方法的预测之间的比较。
In the $\rm SU(3)_F$ symmetry limit, using two- and three-particle distribution amplitudes of $B^{\pm}$-meson for $B_s$, the transition form factors of semileptonic $B_{s}\to K_{0}^*(1430)$ decays are calculated in the framework of the light-cone sum rules. The two-particle distribution amplitudes, $φ_{_{+}}(ω)$ and $φ_{_{-}}(ω)$ have the most important contribution in estimation of the form factors $f_{+}(q^2)$, $f_{-}(q^2)$ and $f_{T}(q^2)$. The knowledge of the behavior of $φ_{_+}(ω)$ is still rather limited. Therefore, we consider three different parametrizations for the shapes of $φ_{_+}(ω)$ that are derived from the phenomenological models. Using the form factors $f_{+}$, $f_{-}$ and $f_{T}$, the semileptonic $B_s \to K_0^*(1430) l \bar{ν_{l}}$ and $B_s \to K_0^*(1430) l \bar{l}/ν\barν$, $l=e, μ, τ$ decays are analyzed. The branching fractions for the aforementioned decays, in addition the longitudinal lepton polarization asymmetries are calculated. A comparison between our results with predictions of other approaches is provided.