论文标题

伍兹:时间序列中分布概括的基准测试

WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series

论文作者

Gagnon-Audet, Jean-Christophe, Ahuja, Kartik, Darvishi-Bayazi, Mohammad-Javad, Mousavi, Pooneh, Dumas, Guillaume, Rish, Irina

论文摘要

机器学习模型通常无法在分配变化下概括地概括。理解并克服这些故障导致了分布外(OOD)概括的研究领域。尽管对静态计算机视觉任务进行了广泛的研究,但对于时间序列任务而言,OOD的概括尚未被逐渐发展。为了使这一差距亮起,我们提出了伍兹:八个具有挑战性的开源时间序列基准,涵盖了各种数据模式,例如视频,脑记录和传感器信号。我们修改了时间序列任务的现有OOD概括算法,并使用我们的系统框架对其进行评估。我们的实验显示了在数据集中改善经验风险最小化和OOD泛化算法的巨大空间,从而强调了时间序列任务带来的新挑战。代码和文档可从https://woods-benchmarks.github.io获得。

Machine learning models often fail to generalize well under distributional shifts. Understanding and overcoming these failures have led to a research field of Out-of-Distribution (OOD) generalization. Despite being extensively studied for static computer vision tasks, OOD generalization has been underexplored for time series tasks. To shine light on this gap, we present WOODS: eight challenging open-source time series benchmarks covering a diverse range of data modalities, such as videos, brain recordings, and sensor signals. We revise the existing OOD generalization algorithms for time series tasks and evaluate them using our systematic framework. Our experiments show a large room for improvement for empirical risk minimization and OOD generalization algorithms on our datasets, thus underscoring the new challenges posed by time series tasks. Code and documentation are available at https://woods-benchmarks.github.io .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源