论文标题
使用深钢筋学习优化超导射频枪
Optimizing a Superconducting Radiofrequency Gun Using Deep Reinforcement Learning
论文作者
论文摘要
超导光电子注射器是一种有前途的技术,用于产生高亮脉冲电子束,具有高重复速率和低发射率。实验,例如超快速电子衍射,Terahertz量表的实验以及Linac应用程序的实验需要此类特性。但是,由于可能的机器参数组合量高,因此优化梁性能是具有挑战性的。在本文中,我们显示了利用已经存在的仿真模型的光束属性的成功自动化优化。为了减少所需的计算时间的量,我们用神经网络更快地替换了昂贵的仿真。为了优化,我们提出了一种加强学习方法,利用了近似衍生物的简单计算。我们证明,对于定义的最低精度,我们的方法优于所需功能评估的常见优化方法。
Superconducting photoelectron injectors are a promising technique for generating high brilliant pulsed electron beams with high repetition rates and low emittances. Experiments such as ultra-fast electron diffraction, experiments at the Terahertz scale, and energy recovery linac applications require such properties. However, optimization of the beam properties is challenging due to the high amount of possible machine parameter combinations. In this article, we show the successful automated optimization of beam properties utilizing an already existing simulation model. To reduce the amount of required computation time, we replace the costly simulation by a faster approximation with a neural network. For optimization, we propose a reinforcement learning approach leveraging the simple computation of the derivative of the approximation. We prove that our approach outperforms common optimization methods for the required function evaluations given a defined minimum accuracy.