论文标题

通过平滑颗粒流体动力学来缓解沿海侵蚀的形状优化

Shape Optimization for the Mitigation of Coastal Erosion via Smoothed Particle Hydrodynamics

论文作者

Schlegel, Luka, Schulz, Volker

论文摘要

基于伴随的形状优化通常依赖于欧拉流场公式。但是,由于拉格朗日粒子方法是解决海洋学中沉积问题的自然选择,因此希望向拉格朗日框架扩展。为了缓解沿海侵蚀,我们对流体流进行了形状优化,该流动由拉格朗日浅水方程描述,并通过平滑的颗粒流体动力学来离散。特此优化了障碍物的形状,以根据形状的微积分最大程度地减少沿海岸线的水波的高度。理论结果将通过探索不同的方案在数值上验证。

Adjoint-based shape optimization most often relies on Eulerian flow field formulations. However, since Lagrangian particle methods are the natural choice for solving sedimentation problems in oceanography, extensions to the Lagrangian framework are desirable. For the mitigation of coastal erosion, we perform shape optimization for fluid flows, that are described by Lagrangian shallow water equations and discretized via smoothed particle hydrodynamics. The obstacle's shape is hereby optimized over an appropriate cost function to minimize the height of water waves along the shoreline based on shape calculus. Theoretical results will be numerically verified by exploring different scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源