论文标题

自旋1磁铁的半古典模拟

Semi-classical simulation of spin-1 magnets

论文作者

Remund, Kimberly, Pohle, Rico, Akagi, Yutaka, Romhányi, Judit, Shannon, Nic

论文摘要

传统上,磁体的理论研究集中在经典的自旋或自旋1/2的极端量子上。但是,用自旋1矩构建的磁铁也很有趣,尤其是因为它们可以在一个站点上支持四极杆以及偶极矩。因此,已广泛研究了Spin-1模型作为磁绝缘体和基于Fe的超导体的四极(自旋纽)阶的原型。同时,由于存在四倍的存在,Spin-1时刻的经典限制不是$ O(3)$ vector,这在描述其属性时必须考虑到这一事实。在本文中,我们开发了一种基于$ u(3)$代数的Spin-1磁铁的方法,该磁铁可以在平等的基础上同时处理偶极子和四极杆矩。这种方法适合经典计算和量子计算,我们通过蒙特卡洛模拟和经典的低温扩张和动态特性开发了用于计算热力学特性所需的技术,并通过“分子动力学”模拟和多个波蒙的扩展。作为一个案例研究,我们介绍了三角形晶格上铁峰级的热力学特性的详细分析和数值结果及其相关的动力学。在低温下,我们表明有可能“纠正”模拟中经典统计的影响,并推断出在Flavour-波波理论中发现的零温度量子结果。

Theoretical studies of magnets have traditionally concentrated on either classical spins, or the extreme quantum limit of spin-1/2. However, magnets built of spin-1 moments are also intrinsically interesting, not least because they can support quadrupole, as well as dipole moments, on a single site. For this reason, spin-1 models have been extensively studied as prototypes for quadrupolar (spin-nematic) order in magnetic insulators, and Fe-based superconductors. At the same time, because of the presence of quadrupoles, the classical limit of a spin-1 moment is not an $O(3)$ vector, a fact which must be taken into account in describing their properties. In this Article we develop a method to simulate spin-1 magnets based on a $u(3)$ algebra which treats both dipole and quadrupole moments on equal footing. This approach is amenable to both classical and quantum calculations, and we develop the techniques needed to calculate thermodynamic properties through Monte Carlo simulations and classical low-temperature expansion, and dynamical properties, through "molecular dynamics" simulations and a multiple-boson expansion. As a case study, we present detailed analytic and numerical results for the thermodynamic properties of ferroquadrupolar order on the triangular lattice, and its associated dynamics. At low temperatures, we show that it is possible to "correct" for the effects of classical statistics in simulations, and extrapolate to the zero-temperature quantum results found in flavour-wave theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源