论文标题

部分可观测时空混沌系统的无模型预测

Constitutive model characterization and discovery using physics-informed deep learning

论文作者

Haghighat, Ehsan, Abouali, Sahar, Vaziri, Reza

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Classically, the mechanical response of materials is described through constitutive models, often in the form of constrained ordinary differential equations. These models have a very limited number of parameters, yet, they are extremely efficient in reproducing complex responses observed in experiments. Additionally, in their discretized form, they are computationally very efficient, often resulting in a simple algebraic relation, and therefore they have been extensively used within large-scale explicit and implicit finite element models. However, it is very challenging to formulate new constitutive models, particularly for materials with complex microstructures such as composites. A recent trend in constitutive modeling leverages complex neural network architectures to construct complex material responses where a constitutive model does not yet exist. Whilst very accurate, they suffer from two deficiencies. First, they are interpolation models and often do poorly in extrapolation. Second, due to their complex architecture and numerous parameters, they are inefficient to be used as a constitutive model within a large-scale finite element model. In this study, we propose a novel approach based on the physics-informed learning machines for the characterization and discovery of constitutive models. Unlike data-driven constitutive models, we leverage foundations of elastoplasticity theory as regularization terms in the total loss function to find parametric constitutive models that are also theoretically sound. We demonstrate that our proposed framework can efficiently identify the underlying constitutive model describing different datasets from the von Mises family.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源