论文标题
弱相互作用的二维Hubbard模型的单粒子特性与Van Hove奇点接近
One- and two-particle properties of the weakly interacting two-dimensional Hubbard model in proximity to the van Hove singularity
论文作者
论文摘要
我们使用直接扰动方法研究了二维正方形晶格上$ t-t^\ prime-u $ hubbard模型的弱耦合极限。在符号计算工具的帮助下,我们计算$χ_ {\ uparrow \ uparrow} $和$χ_ {\ uparrow \ downarrow} $基础中的纵向密度密度相关函数,我们可以从中从中获得动态旋转和充电性,以任意任意的焦点和温度获得动态启发性。我们发现,对于非零$ t^\ prime $,零频率相称$ \ mathbf {q} =(π,π,π)$旋转和电荷激发在不同的密度下最强,并且我们观察到明显的行为变化,这似乎与无与伦比的分散性分散相关,这是构成了危险扩展的无关分散的奇异性。我们发现范霍夫奇异性附近的可压缩性以及双重占用率的行为变化。对于有限的$ t^\ prime $,观察到的范·霍夫(Van Hove)的奇异性是从半场填充的导致我们得出的结论,即可压缩性的降低与莫特(Mott)的绝缘物理学不同,人们在强耦合方面期望的是。我们计算完整的动力自旋和电荷激发,并观察到与铜材料材料的实验一致的电子和孔掺杂方案的独特结构。最后,我们观察到旋转和电荷激发在范霍夫(Van Hove)奇异性附近的特殊分裂,其起源可追溯到频带底部附近的分裂。
We study the weak-coupling limit of the $t-t^\prime-U$ Hubbard model on a two-dimensional square lattice using a direct perturbative approach. Aided by symbolic computational tools, we compute the longitudinal density-density correlation functions in the $χ_{\uparrow \uparrow}$ and $χ_{\uparrow \downarrow}$ basis from which we can obtain the dynamical spin and charge susceptibilities at arbitrary doping and temperature. We find that for non-zero $t^\prime$, the zero frequency commensurate $\mathbf{q} = (π, π)$ spin and charge excitations are each strongest at different densities and we observe a clear behavioral change that appears tied to the van Hove singularity of the non-interacting dispersion upon which the perturbative expansion is built. We find a strongly reduced compressibility in the vicinity of the van Hove singularity as well as a behavioral change in the double occupancy. For finite $t^\prime$, the observed van Hove singularity occurs away from half-filling leading us to conclude that that this reduction in compressibility is distinct from Mott insulating physics that one expects in the strong-coupling regime. We compute the full dynamical spin and charge excitations and observe distinct structure for electron and hole doped scenarios in agreement with experiments on cuprate materials. Finally, we observe a peculiar splitting in spin and charge excitations in the vicinity of the van Hove singularity, the origin of which is traced to a splitting near the bottom of the band.