论文标题

深入加固代理,以进行有效的即时搜索

Deep Reinforcement Agent for Efficient Instant Search

论文作者

Arora, Ravneet Singh, Menon, Sreejith, Jain, Ayush, Jain, Nehil

论文摘要

即时搜索是一个范式,搜索系统在输入时即时检索答案。即时搜索系统的幼稚实现将每次用户键入键时,都会在搜索后端达到搜索后端,并在基础搜索系统上施加很高的负载。在本文中,我们建议通过识别对检索相关文档更为突出的令牌来解决负载问题,并利用这些知识有选择地触发即时搜索。我们训练一种直接与搜索引擎互动的加固代理,并学会了预测单词的重要性。我们提出的方法将基础搜索系统视为黑匣子,并且更普遍地适用于各种体系结构。此外,提出了一个新颖的评估框架,以研究触发搜索数量和系统性能之间的权衡。我们利用该框架来评估和比较提出的增强方法与其他直观基线。实验结果证明了所提出的方法在实现卓越权衡方面的功效。

Instant Search is a paradigm where a search system retrieves answers on the fly while typing. The naïve implementation of an Instant Search system would hit the search back-end for results each time a user types a key, imposing a very high load on the underlying search system. In this paper, we propose to address the load issue by identifying tokens that are semantically more salient towards retrieving relevant documents and utilize this knowledge to trigger an instant search selectively. We train a reinforcement agent that interacts directly with the search engine and learns to predict the word's importance. Our proposed method treats the underlying search system as a black box and is more universally applicable to a diverse set of architectures. Furthermore, a novel evaluation framework is presented to study the trade-off between the number of triggered searches and the system's performance. We utilize the framework to evaluate and compare the proposed reinforcement method with other intuitive baselines. Experimental results demonstrate the efficacy of the proposed method towards achieving a superior trade-off.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源