论文标题

基于多相似性的超相关网络,用于几个片段分段

Multi-similarity based Hyperrelation Network for few-shot segmentation

论文作者

Shi, Xiangwen, Cui, Zhe, Zhang, Shaobing, Cheng, Miao, He, Lian, Tang, Xianghong

论文摘要

很少有语义细分旨在识别一个看不见类别的对象区域,只有几个带注释的示例作为监督。几次分割的关键是在支持图像和查询图像之间建立牢固的语义关系,并防止过度拟合。在本文中,我们提出了一个有效的多相似性超相关网络(MSHNET)来解决几个弹药的语义分割问题。在MSHNET中,我们提出了一种新的生成原型相似性(GPS),与余弦相似性可以在支持图像和查询图像之间建立牢固的语义关系。基于全局特征的本地生成的原型相似性在逻辑上是基于本地特征与全局余弦相似性的互补,并且可以通过同时使用两个相似性来更全面地表达查询图像和受支持的图像之间的关系。此外,我们提出了MSHNET中的对称合并块(SMB),以有效合并多层,多摄像机和多相似性超相关特征。 MSHNET是基于相似性而不是特定类别特征构建的,这些特征可以实现更一般的统一性并有效地减少过度拟合。在两个基准的语义分割数据集Pascal-5i和Coco-20i上,MSHNET在1-Shot和5-Shot语义分段任务上实现了新的最先进的表演。

Few-shot semantic segmentation aims at recognizing the object regions of unseen categories with only a few annotated examples as supervision. The key to few-shot segmentation is to establish a robust semantic relationship between the support and query images and to prevent overfitting. In this paper, we propose an effective Multi-similarity Hyperrelation Network (MSHNet) to tackle the few-shot semantic segmentation problem. In MSHNet, we propose a new Generative Prototype Similarity (GPS), which together with cosine similarity can establish a strong semantic relation between the support and query images. The locally generated prototype similarity based on global feature is logically complementary to the global cosine similarity based on local feature, and the relationship between the query image and the supported image can be expressed more comprehensively by using the two similarities simultaneously. In addition, we propose a Symmetric Merging Block (SMB) in MSHNet to efficiently merge multi-layer, multi-shot and multi-similarity hyperrelational features. MSHNet is built on the basis of similarity rather than specific category features, which can achieve more general unity and effectively reduce overfitting. On two benchmark semantic segmentation datasets Pascal-5i and COCO-20i, MSHNet achieves new state-of-the-art performances on 1-shot and 5-shot semantic segmentation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源